首页> 外文期刊>Physical Communication >Power allocation scheme based on support vector machine for DAS and CAS
【24h】

Power allocation scheme based on support vector machine for DAS and CAS

机译:基于支持向量机的DAS和CAS的功率分配方案

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we particularly focus on the great potential of applying machine learning algorithms to the power allocation of wireless communications. The upcoming fifth generation (5G) wireless networks forces people to look for new approaches to reduce the occupation of computing resources in communication networks to meet the rapidly growing rate of wireless data while guaranteeing reliable communication. In this paper, by interpreting the power allocation to multi-class classification learning, we develop a power allocation scheme based on support vector machine (SVM) algorithm for the colocated antenna systems (CAS) and the distributed antenna systems (DAS), respectively. We compare the SE performance between the SVM algorithm applied to power allocation and the conventional power allocation algorithm. Simulation results show that the multi-class SVM classifier can obtain the power allocation scheme that is very close to the conventional method (sub-gradient method and bisection method) both in DAS and CAS, and also provides a low-complexity solution to solve the power allocation problem in DAS and CAS, which achieves the trade-off between communication performance and computational complexity. (C) 2019 Elsevier B.V. All rights reserved.
机译:在本文中,我们特别关注将机器学习算法应用于无线通信电力分配的巨大潜力。即将推出的第五代(5G)无线网络迫使人们寻找新方法以减少通信网络中计算资源的占用,以满足无线数据的快速增长速率,同时保证可靠的通信。在本文中,通过将功率分配解释为多级分类学习,我们分别开发了基于支持向量机(SVM)算法的电力分配方案,分别用于光电天线系统(CAS)和分布式天线系统(DAS)。我们将SVM算法与传统功率分配算法的SVM算法之间的SE性能进行比较。仿真结果表明,多级SVM分类器可以获得DAS和CAS中的传统方法(子梯度法和双分离方法)非常接近的功率分配方案,并且还提供了解决问题的低复杂性解决方案DAS和CA中的功率分配问题,实现了通信性能与计算复杂性之间的权衡。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Physical Communication》 |2020年第2期|100941.1-100941.7|共7页
  • 作者单位

    Shenzhen Univ Shenzhen Key Lab Adv Machine Learning & Applicat Shenzhen Peoples R China;

    Shenzhen Univ Shenzhen Key Lab Adv Machine Learning & Applicat Shenzhen Peoples R China;

    Shenzhen Univ Shenzhen Key Lab Adv Machine Learning & Applicat Shenzhen Peoples R China;

    Shenzhen Univ Shenzhen Key Lab Adv Machine Learning & Applicat Shenzhen Peoples R China;

    Shenzhen Univ Shenzhen Key Lab Adv Machine Learning & Applicat Shenzhen Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    SVM; Multi-class classification; Spectral efficiency; Power allocation;

    机译:SVM;多级分类;光谱效率;功率分配;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号