...
首页> 外文期刊>Physica status solidi >Electronic structure of hydrogenated amorphous Si_(1-x)N_x thin films using soft X-ray emission and absorption measurements
【24h】

Electronic structure of hydrogenated amorphous Si_(1-x)N_x thin films using soft X-ray emission and absorption measurements

机译:氢化非晶Si_(1-x)N_x薄膜的电子结构,采用软X射线发射和吸收测量

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Hydrogenated amorphous silicon nitride thin films (a-Si_(1-x)N_x:H) with x = 0.46, 0.54, 0.55 and 0.58 have been studied. The optical bandgaps of these materials were 2.41, 2.78, 3.29 and 3.85 eV and Urbach edge bandgaps were 2.80, 3.27, 3.85 and 4.04 eV (W. C. Tan et al., J. Mater. Sci., Mater. Electron. 20, S15-S18 (2009) [1]), respectively. The bandgaps determined in this work using soft X-ray spectroscopy (SXS) are 3.92, 4.43, 5.18 and 5.36 ± 0.25 eV. These large bandgaps are most likely due to the surface sensitivity of the SXS measurements and possible oxidation of the films. The conduction and valence band edges are determined using a linear regression fit and the bandgaps show a similar trend to that of the optical bandgap. Using Density Functional Theory (DFT) calculations for the two crystalline phases of silicon nitride the core hole interaction is accounted for in these bandgap determinations. This shows that both N and Si states are involved in bandgap transitions. Comparison of amorphous SXS spectra with that of crystalline phases shows that the Si bonding environment is similar to that of the beta phase while the N bonding environment is similar to that of the gamma phase. This shows there is a degree of short range order in the films similar to that of α, β-Si_3N_4 indicating tetra-hedral SiN_4. The spectra also show that the Si states with 3s-symmetry decrease as a function of nitrogen concentration which is evidence of Si-Si bonds that would increase the Si 3s states. This increase in Si 3s-states effectively decreases the bandgap.
机译:研究了x = 0.46、0.54、0.55和0.58的氢化非晶硅氮化物薄膜(a-Si_(1-x)N_x:H)。这些材料的光学带隙为2.41、2.78、3.29和3.85 eV,而Urbach边缘带隙为2.80、3.27、3.85和4.04 eV(WC Tan等人,J.Mater.Sci。,Mater.Electron.20,S15- S18(2009)[1])。在这项工作中使用软X射线光谱法(SXS)确定的带隙为3.92、4.43、5.18和5.36±0.25 eV。这些大的带隙最有可能是由于SXS测量的表面灵敏度以及薄膜可能的氧化。导带和价带边缘使用线性回归拟合确定,并且带隙显示出与光学带隙相似的趋势。使用密度泛函理论(DFT)对氮化硅的两个晶相进行计算,在这些带隙确定中考虑了芯孔相互作用。这表明N和Si状态都参与了带隙跃迁。非晶SXS光谱与晶相的比较表明,Si键合环境与β相相似,而N键合环境与γ相相似。这表明在类似于α,β-Si_3N_4的膜中存在指示近四面体SiN_4的短程有序度。光谱还表明,具有3s对称性的Si态随氮浓度的降低而降低,这是Si-Si键增加Si 3s态的证据。 Si 3s态的增加有效地减小了带隙。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号