首页> 外文期刊>Physica status solidi >The role of hydrogenation and gettering in enhancing the efficiency of next-generation Si solar cells: An industrial perspective
【24h】

The role of hydrogenation and gettering in enhancing the efficiency of next-generation Si solar cells: An industrial perspective

机译:氢化和吸杂作用在提高下一代硅太阳能电池效率中的作用:工业观点

获取原文
获取原文并翻译 | 示例
           

摘要

We discuss the importance of gettering and hydrogenation for next-generation silicon solar cells in the context of industrial cell fabrication. Gettering and hydrogenation play a vital role for p-type cell technologies in improving the silicon material's minority charge carrier lifetime. These mechanisms are naturally incorporated during screen-printed cell fabrication through the phosphorus emitter diffusion, silicon nitride deposition and subsequent metallisation firing processes. While the transition towards emitters with lower dopant concentrations and/or thermal oxide passivation can reduce surface recombination, it can negatively impact the ability to getter common impurities such as iron. For cell technologies with alternative low-temperature metallisation approaches, the ability to hydrogenate bulk defects is greatly reduced. Ultrahigh efficiency n-type technologies tend to use heterojunction structures rather than diffused layers, but in doing so, do not benefit from phosphorus gettering. Also, particularly for amorphous silicon-based heterojunction structures, the imposed temperature constraints strongly limit the ability to passivate bulk defects. As a result, high-efficiency n-type technologies rely on the use of 'high-quality' wafers or would require the deliberate addition of gettering and hydrogenation processes before cell fabrication. A potential high-efficiency hybrid homojunction/heterojunction structure is then discussed that could naturally enable gettering and bulk hydrogenation throughout cell fabrication. Calibrated implied open circuit voltage (V_(oc)) map of a p-type mono-crystalline wafer highlighting the impact of pre-hydrogenating the top half of the wafer.
机译:我们讨论了在工业电池制造的背景下,吸杂和氢化对于下一代硅太阳能电池的重要性。吸气和氢化对于p型电池技术在提高硅材料的少数载流子寿命方面起着至关重要的作用。这些机制通过磷发射极扩散,氮化硅沉积以及后续的金属化烧结过程自然地并入了丝网印刷电池的制造过程中。虽然向具有较低掺杂剂浓度和/或热氧化物钝化的发射极过渡可以减少表面复合,但它可能会对吸杂常见杂质(如铁)的能力产生负面影响。对于采用替代性低温金属化方法的电池技术,氢化大量缺陷的能力大大降低。超高效率n型技术倾向于使用异质结结构而不是扩散层,但是这样做不会受益于磷吸收剂。而且,特别是对于基于非晶硅的异质结结构,强加的温度约束严重限制了钝化体缺陷的能力。结果,高效的n型技术依赖于“高质量”晶圆的使用,或者需要在电池制造之前故意添加吸气和氢化工艺。然后讨论了潜在的高效混合同质结/异质结结构,可以自然地在整个电池制造过程中实现吸杂和本体氢化。 p型单晶晶圆的校准隐含开路电压(V_(oc))映射图突出显示了预氢化晶圆上半部的影响。

著录项

  • 来源
    《Physica status solidi》 |2017年第7期|1700305.1-1700305.14|共14页
  • 作者单位

    School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Anzac Parade, 2052 Sydney, Australia;

    School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Anzac Parade, 2052 Sydney, Australia;

    School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Anzac Parade, 2052 Sydney, Australia;

    School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Anzac Parade, 2052 Sydney, Australia,School of Engineering, Federal University of Rio, Grande do Sul, Porto Alegre, Brazil;

    School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Anzac Parade, 2052 Sydney, Australia;

    School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Anzac Parade, 2052 Sydney, Australia;

    School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Anzac Parade, 2052 Sydney, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    contacts; gettering; hydrogen; passivation; silicon; solar cells;

    机译:联系人;吸气氢;钝化硅;太阳能电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号