首页> 外文学位 >Increasing solar energy conversion efficiency in thin film hydrogenated amorphous silicon solar cells with patterned plasmonic silver nano-disk array.
【24h】

Increasing solar energy conversion efficiency in thin film hydrogenated amorphous silicon solar cells with patterned plasmonic silver nano-disk array.

机译:带有图案化等离子体银纳米盘阵列的薄膜氢化非晶硅太阳能电池中太阳能转换效率的提高。

获取原文
获取原文并翻译 | 示例

摘要

Thin film hydrogenated amorphous silicon (a-Si:H) solar photovoltaic (PV) cells are inexpensive and have the fastest energy payback time, however, they suffer from light-induced degradation in performance termed as the Staebler-Wronski effect (SWE). Recent advances in the field of plasmonics have revealed the ability of metallic nanostructures to provide polarization independent, wide angle and broadband absorption for ultrathin active absorbing layers (<100 nm). We investigated a two-dimensional array of multi-resonant plasmonic nano-disk structures to improve the optical absorption in the active absorbing layer of a-Si:H PV cells and to compensate for the negative effects of SWE. This nano-disk patterned solar cell (NDPSC) was found to be superior in performance over a commercial thin film a-Si:H reference PV cell by 18.51% for total optical absorption and by 19.65% in short-circuit current density (JSC).;To maximize the optical enhancement in the NDPSC structures, ultra-thin transparent conducting oxide (TCOs) films with high transmittance and low resistivity are desired. We theoretically investigated the ultra-thin (< 50nm) TCO films of different materials and thickness to ascertain their potential employment in plasmonic-enhanced a-Si:H PV devices. We further numerically evaluated the performance of NDPSC structures for experimentally optimized (by our collaborators) ultra-thin TCO films of indium tin oxide (ITO) having high transmittance and low resistivity. We found a 21% enhancement in optical absorption in the active layer of NDPSC structures using a 36nm high quality ITO films.;The plasmonic nanostructures employed for improving optical absorption in solar PV cell applications are not lossless, and suffer from Ohmic losses. We developed a novel technique of exchanging undesired Ohmic losses in metals with useful absorption in the active semiconducting layers in plasmonic-enhanced PV cells. This technique requires the tailoring of geometric skin depth of metals and engaging the inherent absorbance characteristics of the semiconductors. We have demonstrated that between 75%-95% absorbance can be achieved in the semiconducting layers using this technique.
机译:薄膜氢化非晶硅(a-Si:H)太阳能光伏(PV)电池价格便宜,并且具有最快的能源回收期,但是它们遭受光诱导的性能退化,这种性能被称为Staebler-Wronski效应(SWE)。等离子体领域的最新进展表明,金属纳米结构具有为超薄有源吸收层(<100 nm)提供偏振无关,广角和宽带吸收的能力。我们研究了多共振等离子体纳米盘结构的二维阵列,以改善a-Si:H PV电池的有源吸收层中的光吸收并补偿SWE的负面影响。发现该纳米盘图案化太阳能电池(NDPSC)的性能优于商用薄膜a-Si:H参考PV电池,其总光吸收为18.51%,短路电流密度(JSC)为19.65%为了最大化NDPSC结构中的光学增强,需要具有高透射率和低电阻率的超薄透明导电氧化物(TCO)膜。我们从理论上研究了不同材料和厚度的超薄(<50nm)TCO膜,以确定其在等离子体增强a-Si:H PV器件中的潜在用途。我们进一步数值评估了NDPSC结构的性能(通过我们的合作者),该实验优化了铟锡氧化物(ITO)具有高透射率和低电阻率的超薄TCO薄膜。我们发现使用36nm高质量ITO膜在NDPSC结构的有源层中的光吸收提高了21%。;用于改善太阳能PV电池应用中的光吸收的等离子体纳米结构并非无损,并且遭受了欧姆损耗。我们开发了一种新颖的技术,可以交换金属中不希望的欧姆损耗,并在等离激元增强型PV电池的有源半导体层中吸收有用的吸收。该技术需要定制金属的几何趋肤深度,并利用半导体固有的吸收特性。我们已经证明,使用该技术可以在半导体层中实现75%-95%的吸收率。

著录项

  • 作者

    Vora, Ankit.;

  • 作者单位

    Michigan Technological University.;

  • 授予单位 Michigan Technological University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 76 p.
  • 总页数 76
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号