...
首页> 外文期刊>Photovoltaics, IEEE Journal of >Optimization of the Nanowire Size and Distribution of Compound Semiconductor Nanowire-Based Hybrid Solar Cells
【24h】

Optimization of the Nanowire Size and Distribution of Compound Semiconductor Nanowire-Based Hybrid Solar Cells

机译:基于化合物半导体纳米线的混合太阳能电池的纳米线尺寸和分布的优化

获取原文
获取原文并翻译 | 示例

摘要

The hybrid solar cell (HSC) with an inorganic semiconductor and polymer materials forming an active layer comprises an important class of organic photovoltaics. In this study, the performance of the inorganic nanowire (NW)-based HSC was simulated with different NW size and density within the active layer. The model of mixture active layer has been established, and a design example was provided based on GaAs NWs as the acceptor and poly(3-hexylthiophene-2,5-diyl) (P3HT) polymer as the donor. Using the proposed model, it is obtained that the optimal external quantum efficiency, current density–voltage () characteristic, and power conversion efficiency (PCE) can be obtained by varying the NWs’ center-to-center distance, as well as their radius. It is concluded that when the separation of NWs is fixed at 50 nm, the optimized radius of the NW is 20 nm. While the NW radius is kept as 10 nm, the optimized center-to-center distance between the NWs is 28 nm. The highest short-circuit currents of the HSC are 12.69 and 13.35 mA/cm for the two optimized conditions, whereas the PCEs of the devices are 14.41% and 15.05%, respectively. The simulation results compare well with the current literature using the same material and, thus, provide an effective method for the HSC design.
机译:具有无机半导体和形成活性层的聚合物材料的混合太阳能电池(HSC)包括一类重要的有机光伏电池。在这项研究中,在活性层中具有不同NW尺寸和密度的情况下,模拟了基于无机纳米线(NW)的HSC的性能。建立了混合活性层模型,并以GaAs NWs为受体,聚(3-己基噻吩-2,5-二基)(P3HT)聚合物为供体,给出了设计实例。使用所提出的模型,可以通过改变NW的中心距和半径来获得最佳的外部量子效率,电流密度-电压()特性和功率转换效率(PCE)。 。结论是,当NW的间隔固定为50 nm时,NW的最佳半径为20 nm。虽然NW半径保持为10 nm,但NW之间的最佳中心距为28 nm。在两种优化条件下,HSC的最高短路电流分别为12.69和13.35 mA / cm,而器件的PCE分别为14.41%和15.05%。仿真结果与使用相同材料的当前文献进行了很好的比较,从而为HSC设计提供了一种有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号