...
首页> 外文期刊>Phase Transitions, A Multinational Journal >Si/SiGe heterostructures for advanced microelectronic devices
【24h】

Si/SiGe heterostructures for advanced microelectronic devices

机译:先进微电子器件的Si / SiGe异质结构

获取原文
获取原文并翻译 | 示例

摘要

The permanent size reduction and increasing complexity of microelectronic structures is accompanied by drastic requirements on ultra-thin layer quality. This is the case for Si x Ge1− x ultra-shallow junctions and locally doped nanostructures such as quantum wells, wires or dots. For example, the new generation of Si/Si x Ge1− x -based micro- and optoelectronic devices, e.g. velocity modulation field effect transistor, resonant tunnelling diode, single electron transistor, requires accurate control of surface and interface roughness, almost 0-defect structures and very sharp doping profiles in both p- and n-type material. There exist several difficulties. The first one is the strain control and adjustment (from fully strained to fully relaxed 2D and 3D nanostructures), which also determines the morphological evolution of thin Si1− x Ge x layers and the development of growth instability. The second problem is the doping redistribution during growth, which combines thermodynamics (driving force) and kinetics (exchange rate) mechanisms. The third problem is the 0-defect requirement for ultra-thin doped junctions. In this article, we give an overview of the new insights obtained during the last years in these three domains and we present the physical properties of the structures realised.View full textDownload full textKeywordsSiGe, heterostructure, molecular beam epitaxy, stress engineered structures, electrical, optical and structural propertiesRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/01411590802130576
机译:微电子结构的永久减小尺寸和增加的复杂性伴随着对超薄层质量的苛刻要求。 Si x Ge 1‒ x 超浅结和局部掺杂的纳米结构(例如量子阱,导线或点)就是这种情况。例如,新一代的基于Si / Si x Ge 1 x 的微型和光电器件,例如速度调制场效应晶体管,谐振隧穿二极管,单电子晶体管需要精确控制表面和界面的粗糙度,几乎为0的缺陷结构以及p型和n型材料的非常尖锐的掺杂轮廓。存在一些困难。第一个是应变控制和调整(从完全应变到完全松弛的2D和3D纳米结构),这也决定了薄Si 1∠x Ge的形态演变 x 层与增长不稳定的发展。第二个问题是生长过程中的掺杂重新分布,它结合了热力学(驱动力)和动力学(交换率)机制。第三个问题是超薄掺杂结的零缺陷要求。在本文中,我们概述了最近几年在这三个领域中获得的新见解,并介绍了已实现结构的物理性质。查看全文下载全文关键字SiGe,异质结构,分子束外延,应力工程结构,电气,光学和结构性质相关var addthis_config = {ui_cobrand:“泰勒和弗朗西斯在线”,servicescompact:“ citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,更多”,发布:“ ra-4dff56cd6bb1830b” };添加到候选列表链接永久链接http://dx.doi.org/10.1080/01411590802130576

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号