首页> 外文期刊>Peer-to-peer networking and applications >Peer-to-peer secure multi-party numerical computation facing malicious adversaries - Springer
【24h】

Peer-to-peer secure multi-party numerical computation facing malicious adversaries - Springer

机译:面对恶意对手的对等安全多方数值计算-Springer

获取原文
获取原文并翻译 | 示例

摘要

We propose an efficient framework for enabling secure multi-party numerical computations in a Peer-to-Peer network. This problem arises in a range of applications such as collaborative filtering, distributed computation of trust and reputation, monitoring and other tasks, where the computing nodes are expected to preserve the privacy of their inputs while performing a joint computation of a certain function. Although there is a rich literature in the field of distributed systems security concerning secure multi-party computation, in practice it is hard to deploy those methods in very large scale Peer-to-Peer networks. In this work, we try to bridge the gap between theoretical algorithms in the security domain, and a practical Peer-to-Peer deployment. We consider two security models. The first is the semi-honest model where peers correctly follow the protocol, but try to reveal private information. We provide three possible schemes for secure multi-party numerical computation for this model and identify a single light-weight scheme which outperforms the others. Using extensive simulation results over real Internet topologies, we demonstrate that our scheme is scalable to very large networks, with up to millions of nodes. The second model we consider is the malicious peers model, where peers can behave arbitrarily, deliberately trying to affect the results of the computation as well as compromising the privacy of other peers. For this model we provide a fourth scheme to defend the execution of the computation against the malicious peers. The proposed scheme has a higher complexity relative to the semi-honest model. Overall, we provide the Peer-to-Peer network designer a set of tools to choose from, based on the desired level of security.
机译:我们提出了一个有效的框架,用于在对等网络中实现安全的多方数值计算。在诸如协同过滤,信任和信誉的分布式计算,监视和其他任务的一系列应用中会出现此问题,在这些应用中,期望计算节点在执行特定功能的联合计算时保留其输入的隐私。尽管在分布式系统安全领域中有关于安全多方计算的大量文献,但是在实践中,很难将这些方法部署在非常大规模的对等网络中。在这项工作中,我们试图弥合安全领域中的理论算法与实际的对等部署之间的鸿沟。我们考虑两种安全模型。第一个是半诚实的模型,在该模型中,对等端正确遵循协议,但是尝试泄露私有信息。我们为该模型提供了三种安全的多方数值计算方案,并确定了一种优于其他方案的轻型方案。通过使用基于真实Internet拓扑的大量仿真结果,我们证明了我们的方案可扩展到具有多达数百万个节点的超大型网络。我们考虑的第二个模型是恶意对等模型,其中对等可以任意行为,故意试图影响计算结果以及损害其他对等的隐私。对于此模型,我们提供了第四种方案来防御恶意同位体对计算的执行。相对于半诚实模型,所提出的方案具有更高的复杂度。总体而言,我们根据所需的安全级别为点对点网络设计人员提供了一组可供选择的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号