首页> 外文期刊>Peer-to-peer networking and applications >Towards an immunity based distributed algorithm to detect harmful files shared in P2P networks - Springer
【24h】

Towards an immunity based distributed algorithm to detect harmful files shared in P2P networks - Springer

机译:迈向基于免疫的分布式算法,以检测P2P网络中共享的有害文件-Springer

获取原文
获取原文并翻译 | 示例

摘要

Due to the free and self-organized features, the Peer-to-Peer file sharing networks have become one of the major transmission channels for harmful contents, such as child pornography and abuse video. Traditional monitoring techniques deploy centralized powerful servers at gateways to analyse and filter the P2P traffic. However, the immense amount of documents shared and transferred in the P2P networks makes these techniques quite cost-expensive and inefficient. To address this problem, we develop the iDetect, a distributed harmful content detection algorithm inspired by the Clonal Selection mechanism of immune systems. Analogous to the B-lymphocytes secreting antibodies against antigens in human bodies, the clients in the P2P networks deployed with iDetect cooperate to detect the harmful contents in a distributed and self-organized manner. We build a probability model of the detection procedure to prove the performance of iDetect theoretically. We also conduct simulations to compare iDetect with traditional centralized filtering algorithms. The theoretical proof and experimental results show that iDetect is efficient, effective, self-optimized and scalable to locate the clients sharing harmful contentsin P2P networks.
机译:由于免费和自组织的功能,对等文件共享网络已成为有害内容(如儿童色情和虐待视频)的主要传输渠道之一。传统的监视技术在网关处部署集中式功能强大的服务器,以分析和过滤P2P流量。但是,P2P网络中共享和传输的大量文档使这些技术非常昂贵且效率低下。为了解决这个问题,我们开发了iDetect,这是一种分布式有害内容检测算法,其灵感来自免疫系统的克隆选择机制。类似于B淋巴细胞在人体中分泌针对抗原的抗体,与iDetect一起部署的P2P网络中的客户合作以分布式和自组织的方式检测有害成分。我们建立了检测程序的概率模型,以从理论上证明iDetect的性能。我们还进行了仿真,以将iDetect与传统的集中式过滤算法进行比较。理论证明和实验结果表明,iDetect是高效,有效,自优化和可扩展的,可以定位共享P2P网络中有害内容的客户端。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号