首页> 外文期刊>Pattern Recognition Letters >Adaptive confidence transform based classifier combination for Chinese character recognition
【24h】

Adaptive confidence transform based classifier combination for Chinese character recognition

机译:基于自适应置信度变换的汉字识别分类器组合

获取原文
获取原文并翻译 | 示例

摘要

Classifier combination is an effective way to improve recognition performance. However, in Chinese character recognition the extremely large number of categories results in several difficulties for the combination. In order to overcome these difficulties a novel combination method is presented in this paper. It consists of three main components: adaptive confidence transform (ACT), consensus theoretic combination and reliability based speedup scheme. ACT, which can estimate a posteriori probabilities from raw measurement values, is the focus of this paper. Experimental results show a significant reduction of error rates in both printed (PCCR) and handwritten Chinese character recognition (HCCR).
机译:分类器组合是提高识别性能的有效方法。然而,在汉字识别中,种类繁多的类别导致组合困难。为了克服这些困难,本文提出了一种新颖的组合方法。它包括三个主要部分:自适应置信度变换(ACT),共识理论组合和基于可靠性的加速方案。可以从原始测量值估计后验概率的ACT是本文的重点。实验结果表明,印刷(PCCR)和手写汉字识别(HCCR)的错误率均显着降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号