首页> 外文期刊>Pattern Recognition Letters >Texture classification using multiresolution Markov random field models
【24h】

Texture classification using multiresolution Markov random field models

机译:使用多分辨率马尔可夫随机场模型的纹理分类

获取原文
获取原文并翻译 | 示例

摘要

Texture classification is an important topic in texture analysis. Texture classification has wide applications in remote sensing, computer vision, and image analysis. During the past years, several authors discussed to use multiresolution stochastic approaches to model textures. However, in these approaches, the highpass components which contain rich detailed information are lost. In this paper, we propose multiresolution MRF (MRMRF) modeling to describe textures. MRMRF modeling is a method trying to fuse filtering theory and MRF models. In the MRMRF modeling, highpass components are considered as well as lowpass components. "Brodatz texture database" is used in this paper for the experiments and Nearest Linear Combination (NLC) is used as measurement of distance to improve the recognition rate. The experimental results show that NLC has much better performance than Nearest Neighbor (NN) as the measurement in MRMRF modeling.
机译:纹理分类是纹理分析中的重要主题。纹理分类在遥感,计算机视觉和图像分析中具有广泛的应用。在过去的几年中,一些作者讨论了使用多分辨率随机方法对纹理进行建模。但是,在这些方法中,包含丰富详细信息的高通组件会丢失。在本文中,我们提出了多分辨率MRF(MRMRF)建模来描述纹理。 MRMRF建模是一种尝试融合滤波理论和MRF模型的方法。在MRMRF建模中,考虑了高通组件以及低通组件。本文使用“ Brodatz纹理数据库”进行实验,并使用“最近线性组合”(Nearest Linear Combination,NLC)进行距离测量,以提高识别率。实验结果表明,在MRMRF建模中,NLC具有比最近邻(NN)更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号