首页> 外文期刊>Pattern recognition letters >Iterative weak/self-supervised classification framework for abnormal events detection
【24h】

Iterative weak/self-supervised classification framework for abnormal events detection

机译:迭代弱/自我监督分类框架,用于异常事件检测

获取原文
获取原文并翻译 | 示例

摘要

The detection of abnormal events in surveillance footage remains a challenge and has been the scope of various research works. Having observed that the state-of-the-art performance is still unsatisfactory, this paper provides a novel solution to the problem, with four-fold contributions: 1) upon the work of Sultani et al., we introduce one iterative learning framework composed of two experts working in the weak and self-supervised paradigms and providing additional amounts of learning data to each other, where the novel instances at each iteration are filtered by a Bayesian framework that supports the iterative data augmentation task; 2) we describe a novel term that is added to the baseline loss to spread the scores in the unit interval, which is crucial for the performance of the iterative framework; 3) we propose a Random Forest ensemble that fuses at the score level the top performing methods and reduces the EER values about 20% over the state-of-the-art; and 4) we announce the availability of the & rdquo;UBI-Fights & rdquo; dataset, fully annotated at the frame level, that can be freely used by the research community. The code, details of the experimental protocols and the dataset are publicly available at http://github.com/DegardinBruno/ .(c) 2021 Elsevier B.V. All rights reserved.
机译:监控镜头异常事件的检测仍然是一个挑战,并且已经是各种研究工作的范围。观察到最先进的性能仍然不令人满意,本文为问题提供了一种新的解决方案,有四倍的贡献:1)在Sultani等人的工作中,我们介绍了一个迭代学习框架在弱者和自我监督范式中工作的两个专家,并互相提供额外的学习数据,其中每个迭代的新颖实例由支持迭代数据增强任务的贝叶斯框架过滤; 2)我们描述了一种新的术语,该术语被添加到基线损失,以将分数扩展到单位间隔,这对于迭代框架的性能至关重要; 3)我们提出了一个随机森林集合,在得分水平上融合了顶部执行方法,并减少了最先进的eer值约20%; 4)我们宣布了&rdquo的可用性; UBI-Cracks&Rdquo; DataSet,在帧级别注释,可以由研究社区自由使用。代码,实验协议和数据集的详细信息在http://github.com/degardinbruno/公开使用。(c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号