首页> 外文期刊>Pattern recognition letters >Ring-Regularized Cosine Similarity Learning for Fine-Grained Face Verification
【24h】

Ring-Regularized Cosine Similarity Learning for Fine-Grained Face Verification

机译:戒指正规的余弦相似性学习,用于细粒度脸部验证

获取原文
获取原文并翻译 | 示例

摘要

Face verification aims to determine whether a pair of face images belong to the same person. Different from the traditional face verification, the negative sample pairs in fine-grained face verification are com-posed of similar face images, e.g., facial images of twins, which makes it still very challenging. In this paper, we investigate the fine-grained face verification problem via metric learning techniques, and pro -pose a ring-regularized cosine similarity learning (RRCSL) method to distinguish the negative face pairs. The proposed RRCSL method seeks a linear transformation to enlarge the cosine similarity of intra-class and reduce the cosine similarity of inter-class as much as possible, and adaptively learns the norm of samples to the scaled circle by exploiting the ring regularization term simultaneously. Experimental re-sults on three face datasets demonstrate the effectiveness of RRCSL for fine-grained face verification. (c) 2021 Elsevier B.V. All rights reserved.
机译:面部验证旨在确定一对面部图像是否属于同一个人。 与传统的面部验证不同,细粒度验证中的负样品对是类似的面部图像,例如双胞胎的面部图像,这使得它仍然非常具有挑战性。 在本文中,我们通过度量学习技术研究了细粒度的面部验证问题,并立足了一个环形正规化的余弦相似度学习(RRCSL)方法来区分负面对成对。 所提出的RRCSL方法寻求直线变换来扩大内部类的余弦相似性,并尽可能地降低帧间帧间的余弦相似性,并通过同时利用环正则化术语自适应地将样品的标准用于缩放圆圈。 在三个面部数据集上的实验重新烹饪证明了RRCSL用于细粒度核实的有效性。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号