首页> 外文期刊>Pattern recognition letters >Graph-based neural network models with multiple self-supervised auxiliary tasks
【24h】

Graph-based neural network models with multiple self-supervised auxiliary tasks

机译:基于图的神经网络模型,具有多种自我监督的辅助任务

获取原文
获取原文并翻译 | 示例

摘要

Self-supervised learning is currently gaining a lot of attention, as it allows neural networks to learn ro-bust representations from large quantities of unlabeled data. Additionally, multi-task learning can further improve representation learning by training networks simultaneously on related tasks, leading to signifi-cant performance improvements. In this paper, we propose three novel self-supervised auxiliary tasks to train graph-based neural network models in a multi-task fashion. Since Graph Convolutional Networks are among the most promising approaches for capturing relationships among structured data points, we use them as a building block to achieve competitive results on standard semi-supervised graph classifi-cation tasks. (c) 2021 Elsevier B.V. All rights reserved.
机译:自我监督的学习目前正在引起很多关注,因为它允许神经网络从大量未标记数据中学习RO-Bust表示。 此外,多任务学习可以通过同时培训相关任务来进一步改进表示学习,从而导致显着的性能改进。 在本文中,我们提出了三种新颖的自我监督辅助任务,以多任务方式训练基于图形的神经网络模型。 由于图形卷积网络是捕获结构化数据点之间关系的最有希望的方法之一,我们将它们用作构建块以实现标准半监控图形分类任务的竞争结果。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号