首页> 外文期刊>Pattern recognition letters >Signless-laplacian eigenvector centrality: A novel vital nodes identification method for complex networks
【24h】

Signless-laplacian eigenvector centrality: A novel vital nodes identification method for complex networks

机译:零牌拉普拉斯特征传染媒介中心:复杂网络的新型生命节点识别方法

获取原文
获取原文并翻译 | 示例

摘要

Identifying important and influential nodes in complex networks is crucial in understanding, controlling, accelerating or terminating spreading processes for information, diseases, innovations, behaviors, and so on. Many existing centrality methods evaluate a node's importance (or centrality) according to its neighbors, but the effects of its incident edges are always ignored or treated equally. However, in reality, edges always play different roles, which are usually measured by the edge centrality. Note that the centrality of a vertex is affected by the centralities of its incident edges, and conversely the centrality of an edge is determined by the centralities of its two endpoints. In this paper, we present a novel way to evaluate the centrality for both nodes and edges simultaneously by constructing a mutually updated iterative framework. Furthermore, we will prove that the node centralities obtained by this framework are actually the principal eigenvector of the signless-laplacian matrix of the input network, thus we call this new node centrality method as signless-laplacian eigenvector centrality method. We test it on several classical data sets and all produce satisfying results. It is expected to have a promising applications in the future. (C) 2021 Elsevier B.V. All rights reserved.
机译:识别复杂网络中的重要和有影响力的节点对于理解,控制,加速或终止传播过程,以获取信息,疾病,创新,行为等,至关重要。许多现有的中心性方法根据其邻居评估节点的重要性(或中心),但是始终忽略或平等地忽略或接受入射边缘的效果。然而,实际上,边缘始终发挥不同的角色,通常由边缘中心测量。请注意,顶点的中心度受其事件边缘的集中性的影响,并且相反,边缘的中心度由其两个端点的集合确定。在本文中,我们通过构建相互更新的迭代框架来提出一种新颖的方式来评估两个节点和边缘的中心。此外,我们将证明这一框架获得的节点集中实际上是输入网络的无数拉普拉斯矩阵的主要特征向量,因此我们将此新节点中心点称为无偶象拉普拉斯特征传染媒介方法。我们在几种古典数据集和所有产生令人满意的结果中测试它。预计将来有一个有前途的应用。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号