首页> 外文期刊>Pattern recognition letters >Perception matters: Exploring imperceptible and transferable anti-forensics for GAN-generated fake face imagery detection
【24h】

Perception matters: Exploring imperceptible and transferable anti-forensics for GAN-generated fake face imagery detection

机译:感知事项:探索GaN生成的假面图像检测的难以察觉和可转移的反质子

获取原文
获取原文并翻译 | 示例

摘要

Recently, generative adversarial networks (GANs) can generate photo-realistic fake facial images which are perceptually indistinguishable from real face photos, promoting research on fake face detection. Though fake face forensics can achieve high detection accuracy, their anti-forensic counterparts are less investigated. Here we explore more imperceptible and transferable anti-forensics for fake face imagery detection based on adversarial attacks. Since facial and background regions are often smooth, even small perturbation could cause noticeable perceptual impairment in fake face images. Therefore it makes existing transfer-based adversarial attacks ineffective as an anti-forensic method. Our perturbation analysis reveals the intuitive reason of the perceptual degradation issue when directly applying such existing attacks. We then propose a novel adversarial attack method, better suitable for image anti-forensics, in the transformed color domain by considering visual perception. Conceptually simple yet effective, the proposed method can fool both deep learning and non-deep learning based forensic detectors, achieving higher adversarial transferability and significantly improved visual quality. Specially, when adversaries consider imperceptibility as a constraint, the proposed anti-forensic method achieves the state-of-the-art attacking performances in the transfer-based black-box setting (i.e. around 30% higher attack transferability than baseline attacks). More imperceptible and more transferable , the proposed method raises new security concerns to fake face imagery detection. We have released our code for public use, and hopefully the proposed method can be further explored in related forensic applications as an anti-forensic benchmark.(c) 2021 Elsevier B.V. All rights reserved.
机译:近日,生成对抗网络(甘斯)可以生成都来自于真实人脸照片感知无法区分照片般逼真的假脸图像,促进假冒人脸检测研究。虽然假脸取证可以达到很高的检测精度,其抗法医同行较少研究。在这里,我们探索更不易察觉的,可转让的反取证的基础上对抗攻击的假脸想象检测。由于脸部和背景区域往往光滑,甚至小的扰动可能导致假脸图像明显知觉损伤。因此它使得现有的基于转换的敌对攻击无效作为抗法医方法。我们的扰动分析表明,当直接应用这种现有的攻击知觉退化问题的直观原因。然后,我们考虑视觉感知提出了一种新的对抗攻击的方法,更适合于图像的反取证,在变换颜色域。从概念上简单而有效的,该方法能愚弄深度学习和非学习深基于法医探测器,实现更高的对抗转移性和显著改善视觉质量。特别是,当对手考虑隐蔽性的约束,所提出的反取证方法实现的基于转换的黑盒设置的国家的最先进的进攻表演(即约提高30%的攻击转移性比基线攻击)。更难以察觉,更可转让的,所提出的方法提出了新的安全问题,以假脸想象检测。我们已经发布了我们的代码,供市民使用,并希望该方法能在相关的法医学应用作为抗法医基准有待进一步探讨。版权所有(C)2021爱思唯尔B.V.所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2021年第6期|15-22|共8页
  • 作者单位

    Univ British Columbia Dept Elect & Comp Engn Vancouver BC V6T 1Z4 Canada|Northwestern Polytech Univ Sch Marine Sci & Technol Xian 710102 Peoples R China;

    Univ British Columbia Dept Stat Vancouver BC V6T 1Z4 Canada;

    Northwestern Polytech Univ Sch Marine Sci & Technol Xian 710102 Peoples R China;

    Univ British Columbia Dept Elect & Comp Engn Vancouver BC V6T 1Z4 Canada|Xi An Jiao Tong Univ Sch Informat & Commun Engn Xian 710048 Peoples R China;

    Univ British Columbia Dept Elect & Comp Engn Vancouver BC V6T 1Z4 Canada;

    Univ British Columbia Dept Elect & Comp Engn Vancouver BC V6T 1Z4 Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fake face imagery anti-forensics; Imperceptible attacks; Transferable attacks; Improved adversarial attack;

    机译:假脸图像反上取证;难以察觉的攻击;可转移的攻击;改善的对抗攻击;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号