首页> 外文期刊>Pattern recognition letters >Adaptive hybrid attention network for hyperspectral image classification
【24h】

Adaptive hybrid attention network for hyperspectral image classification

机译:高光谱图像分类的自适应混合注意网络

获取原文
获取原文并翻译 | 示例

摘要

The task of land cover classification from hyperspectral images (HSI) has recently witnessed sharp improvements with the applications of deep convolutional networks (CNN). This is mainly attributed to the hierarchical spectral-spatial feature learning capabilities of the CNN models. However, it is important to encode the short to long range spatial dependencies to predict the pixelwise labels without inducing additional redundancy at the feature level. The standard CNN based land cover classification models for HSI overlook this aspect in general. To overcome this, we propose a hybrid attention based 3D classification model for hyperspectral images. Our model comprises of 1D and 2D CNNs to individually generate the attention masks that respectively highlight the spectral and spatial characteristics of our input image. For optimal learning the spectral and spatial features in our model are combined adaptively with the original input and sent to the 3D classification module. To enhance the classification performance, we incorporate classwise Wasserstein loss alongwith the crossentropy loss. Our methods are evaluated on three widely used hyperspectral datasets: Houston datasets (DFC-2013 and DFC-2018) and Salinas dataset, and has satisfactorily outperformed all the prior benchmark methods.(c) 2021 Elsevier B.V. All rights reserved.
机译:Hyperspectral图像(HSI)的土地覆盖分类的任务最近目睹了深度卷积网络(CNN)的应用急剧改进。这主要归因于CNN模型的分层光谱空间特征学习能力。然而,重要的是编码短到长范围的空间依赖性,以预测Pix elw标签,而不会在特征级别诱导额外的冗余。基于标准的CNN基于CNN的土地覆盖分类模型通常忽略了这方面。为了克服这一点,我们提出了一种基于Hybrade的3D分类模型进行高光谱图像。我们的模型包括1D和2D CNN,可以单独地生成注意掩模,分别突出显示输入图像的光谱和空间特性。为了最佳地学习我们模型中的光谱和空间特征与原始输入完全合并,并将其发送到3D分类模块。为了提高分类性能,我们将Classwise Wasserstein损失纳入同学损失。我们的方法是在三个广泛使用的超光谱数据集:休斯顿数据集(DFC-2013和DFC-2018)和SalinaS数据集,并且令人满意地优于所有先前的基准方法。(c)2021 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号