首页> 外文期刊>Pattern recognition letters >Object-oriented remote sensing image information extraction method based on multi-classifier combination and deep learning algorithm
【24h】

Object-oriented remote sensing image information extraction method based on multi-classifier combination and deep learning algorithm

机译:基于多分类器组合和深度学习算法的面向对象遥感图像信息提取方法

获取原文
获取原文并翻译 | 示例

摘要

In recent years, high spatial resolution remote sensing technology has made significant progress. High resolution remote sensing satellites provide great convenience for high-quality image acquisition. In order to adapt to changes in the appearance of the target, mainstream tracking algorithms often use pattern recognition methods to build a target appearance model with learning capabilities, and use the image frames acquired during the tracking process to update the appearance model. This paper mainly studies the object-oriented remote sensing image information extraction method based on multi-classifier combination and deep learning algorithm. In this paper, we use the splitting mechanism of the tree structure to retain the appearance model with diversity, and through the integrated learning integration strategy, the target position is collaboratively predicted. Through the comparative analysis on the OTB and VOT platforms, the algorithm works well when the requirements of the tracking standards are low (the accuracy threshold is greater than 20 pixels and the success threshold is less than 0.4 pixels). The experimental results in this paper show that compared with other advanced classification methods, the proposed method shows better generalization performance in accuracy, recall, f-measure, g-mean and AUC. (C) 2020 Elsevier B.V. All rights reserved.
机译:近年来,高空间分辨率遥感技术取得了重大进展。高分辨率遥感卫星为高质量的图像采集提供了极大的便利。为了适应目标的外观变化,主流跟踪算法通常使用模式识别方法来构建具有学习能力的目标外观模型,并使用在跟踪过程中获取的图像帧来更新外观模型。本文主要研究基于多分类器组合和深层学习算法的面向对象遥感图像信息提取方法。在本文中,我们使用树结构的分裂机制来保持外观模型,并通过集成的学习集成策略,对目标位置预测。通过对OTB和VOT平台的比较分析,当跟踪标准的要求低(精度阈值大于20像素并且成功阈值小于0.4像素时,该算法运行良好。本文的实验结果表明,与其他先进的分类方法相比,该方法的准确性,召回,F测量,G均值和AUC表示更好的泛化性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2021年第1期|32-36|共5页
  • 作者单位

    Beijng Jiaotong Univ Sch Civil Engn Beijing 100044 Peoples R China|Beijng Jiaotong Univ Inst Spatial Informat Line Engn Beijing 100044 Peoples R China;

    Weifang Engn Vocat Coll Dept Architectural Engn Weifang 262500 Shandong Peoples R China;

    Beijng Jiaotong Univ Sch Comp & Informat Technol Beijing 100044 Peoples R China;

    Beijng Jiaotong Univ Acad Urban Planning & Design Beijing 100044 Peoples R China;

    Beijng Jiaotong Univ Sch Civil Engn Beijing 100044 Peoples R China|Beijng Jiaotong Univ Inst Spatial Informat Line Engn Beijing 100044 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-classifier combination; Deep learning algorithm; Object-oriented; Remote sensing image; Information extraction;

    机译:多分类器组合;深度学习算法;面向对象;遥感图像;信息提取;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号