首页> 外文期刊>Pattern recognition letters >Combined center dispersion loss function for deep facial expression recognition
【24h】

Combined center dispersion loss function for deep facial expression recognition

机译:深层面部表情识别的组合中心色散损失函数

获取原文
获取原文并翻译 | 示例

摘要

We propose a combined center dispersion loss function to reduce the intra-class variations and interclass similarities of facial expression datasets and achieve high accuracy in facial expression recognition. Because of the lack of data, we strategically combine four publicly available facial expression datasets for training. Moreover, we propose an incremental cosine annealing method for deploying multiple models trained with incremental learning rates and ensemble predictions for achieving better accuracy. This method also reduces the computational cost and yields ensemble predictions of varied models, instead of similar models, that are trained with the same learning rates. We train our methods using the VGGFace network and achieve an accuracy of 74.71% on the FER2013 test set. (C) 2020 Elsevier B.V. All rights reserved.
机译:我们提出了一个组合的中心色散损失函数,以减少面部表情数据集的类内变化和互连相似度,并在面部表情识别中实现高精度。由于缺乏数据,我们策略性地将四个公开的面部表情数据集结合起来进行培训。此外,我们提出了一种增量余弦退火方法,用于部署具有增量学习速率的多种型号的多种型号,以及用于实现更好的准确性的集合预测。该方法还降低了不同模型的计算成本,而不是类似的模型,而不是相同的学习速率训练。我们使用VGGFace网络培训我们的方法,在FER2013测试集中达到74.71%的准确性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号