首页> 外文期刊>Pattern recognition letters >Self-supervised pain intensity estimation from facial videos via statistical spatiotemporal distillation
【24h】

Self-supervised pain intensity estimation from facial videos via statistical spatiotemporal distillation

机译:通过统计时滞蒸馏从面部影片自我监督的疼痛强度估算

获取原文
获取原文并翻译 | 示例

摘要

Recently, automatic pain assessment technology, in particular automatically detecting pain from facial expressions, has been developed to improve the quality of pain management, and has attracted increasing attention. In this paper, we propose self-supervised learning for automatic yet efficient pain assessment, in order to reduce the cost of collecting large amount of labeled data. To achieve this, we introduce a novel similarity function to learn generalized representations using a Siamese network in the pretext task. The learned representations are finetuned in the downstream task of pain intensity estimation. To make the method computationally efficient, we propose Statistical Spatiotemporal Distillation (SSD) to encode the spatiotemporal variations underlying the facial video into a single RGB image, enabling the use of less complex 2D deep models for video representation. Experiments on two publicly available pain datasets and cross-dataset evaluation demonstrate promising results, showing the good generalization ability of the learned representations. (C) 2020 Elsevier B.V. All rights reserved.
机译:最近,自动疼痛评估技术,特别是自动检测面部表情的疼痛,已经开发出提高疼痛管理的质量,并引起了越来越关注的关注。在本文中,我们提出了自动监督的学习,以降低收集大量标记数据的成本。为此,我们引入了一种新颖的相似性,以在借口任务中使用暹罗网络学习广义表示。在疼痛强度估计的下游任务中,学习的陈述是Fineetuned。为了使该方法有效地,我们提出统计时空蒸馏(SSD),以将底部视频下面的时空变化编码为单个RGB图像,使得能够使用更少的复杂2D深度模型进行视频表示。两种公共止痛数据集的实验和交叉数据集评估表明了有希望的结果,展现了学习卓越表现的良好普遍化能力。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号