首页> 外文期刊>Pattern recognition letters >How distance metrics influence missing data imputation with k-nearest neighbours
【24h】

How distance metrics influence missing data imputation with k-nearest neighbours

机译:距离指标如何影响k-intele邻居缺少数据估算

获取原文
获取原文并翻译 | 示例

摘要

In missing data contexts, k-nearest neighbours imputation has proven beneficial since it takes advantage of the similarity between patterns to replace missing values. When dealing with heterogeneous data, researchers traditionally apply the HEOM distance, that handles continuous, nominal and missing data. Although other heterogeneous distances have been proposed, they have not yet been investigated and compared for k-nearest neighbours imputation. In this work, we study the effect of several heterogeneous distances on k-nearest neighbours imputation on a large benchmark of publicly-available datasets.
机译:在缺少数据上下文中,K-Collest邻居归纳已被证明有利,因为它利用了模式之间的相似性来替换缺失值。在处理异构数据时,研究人员传统上应用了兴中距离,处理连续,标称和缺失的数据。虽然已经提出了其他异构距离,但它们尚未研究并将其与K-CORMALT邻居归档进行比较。在这项工作中,我们研究了几种异构距离对k最近邻居归责的效果在公共可公共数据集的大型基准上。

著录项

  • 来源
    《Pattern recognition letters》 |2020年第8期|111-119|共9页
  • 作者单位

    CISUC Department of Informatics Engineering University of Coimbra Coimbra 3030-790 Portugal Medical Physics Radiobiology and Radiation Protection Group IPO Porto Research Centre (CI-IPOP) Porto 4200-072 Portugal;

    CISUC Department of Informatics Engineering University of Coimbra Coimbra 3030-790 Portugal;

    Institute of Computing Science Poznan University of Technology Poznan 60-965 Poland;

    Medical Physics Radiobiology and Radiation Protection Group IPO Porto Research Centre (CI-IPOP) Porto 4200-072 Portugal Instituto de Ciencias Biomedicas Abel Salazar da Universidade do Porto Porto 4050-313 Portugal;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Missing Data; Data Imputation; k-nearest neighbours; Distance Functions; Heterogeneous Data; Imbalanced Data;

    机译:缺失数据;数据归档;k-reallibor;距离功能;异构数据;不平衡数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号