首页> 外文期刊>Pattern recognition letters >Facial expression recognition based on deep convolution long short-term memory networks of double-channel weighted mixture
【24h】

Facial expression recognition based on deep convolution long short-term memory networks of double-channel weighted mixture

机译:基于深度卷积的双通道加权混合物的长短短期内存网络的面部表情识别

获取原文
获取原文并翻译 | 示例

摘要

With the aging population and the increasing number of empty nest elderly, more and more researches focus on home service robots. Autonomous analysis of human emotions by robots is helpful to provide better services for human beings. Facial expression, as an important modality in emotional recognition, is helpful to improve emotional recognition. In order to explore a new method that can effectively improve the recognition rate of expression two facial expression recognition(FER) methods are proposed in this paper. They are double-channel weighted mixture deep convolution neural networks (WMDCNN) based on static images and deep cnn long short-term memory networks of double-channel weighted mixture(WMCNN-LSTM) based on image sequences. WMDCNN network can quickly recognize facial expressions and provide static image features for WMCNN-LSTM network. WMCNN-LSTM network utilizes the static image features to further acquire the temporal features of image sequence, which can realize the accurate recognition of facial expressions. The experimental results show that the average recognition rate of the WMDCNN network on the four datasets of CK+, JAFFE, Oulu-CASIA and MMI are 0.985, 0.923,0.86,0.78 respectively. The WMCNN-LSTM method has an average recognition rate of 0.975, 0.88, and 0.87 on the three datasets CK+, Oulu-CASIA and MMI respectively. By comparing with the existing FER method, our method further improves the recognition rate in the above four expression data sets. (C) 2019 Elsevier B.V. All rights reserved.
机译:随着年龄的人口和越来越多的空洞老人,越来越多的研究专注于家庭服务机器人。机器人的自主分析是有助于为人类提供更好的服务。面部表情作为情绪识别的重要情色,有助于提高情感认可。为了探讨可以有效提高表达识别率的新方法,本文提出了两种面部表情识别(FER)方法。它们是基于图像序列的双通道加权混合物(WMCNN-LSTM)的静态图像和深CNN长短期存储网络的双通道加权混合性神经网络(WMDCNN)。 WMDCNN网络可以快速识别面部表情,并为WMCNN-LSTM网络提供静态图像功能。 WMCNN-LSTM网络利用静态图像特征来进一步获取图像序列的时间特征,这可以实现对面部表情的准确识别。实验结果表明,CK +,Jaffe,Oulu-Casia和MMI四个数据集上的WMDCNN网络的平均识别率分别为0.985,0.923,0.86,0.78。 WMCNN-LSTM方法分别在三个数据集CK +,Oulu-Casia和MMI上的平均识别率为0.975,0.88和0.87。通过与现有FER方法进行比较,我们的方法进一步提高了上述四个表达式数据集中的识别率。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号