机译:基于关联规则特征选择的样本不平衡疾病分类模型
Xiamen Univ Sch Informat Xiamen 361005 Peoples R China;
Nanchang Univ Sch Software Nanchang 330047 Jiangxi Peoples R China|Tongji Univ Dept Comp Sci & Technol Shanghai 201804 Peoples R China;
Tongji Univ Dept Comp Sci & Technol Shanghai 201804 Peoples R China;
Nanchang Univ Sch Software Nanchang 330047 Jiangxi Peoples R China;
Tongji Univ Dept Comp Sci & Technol Shanghai 201804 Peoples R China;
Tongji Univ Dept Comp Sci & Technol Shanghai 201804 Peoples R China;
Xiamen Univ Sch Informat Xiamen 361005 Peoples R China;
Jiangxi Agr Univ Software Coll Nanchang 3300029 Jiangxi Peoples R China;
Jiangxi Agr Univ Software Coll Nanchang 3300029 Jiangxi Peoples R China;
Jiangxi Agr Univ Software Coll Nanchang 3300029 Jiangxi Peoples R China;
Association rules; Feature selection; Integrated learning; Sample imbalance;
机译:高度不平衡数据集的基于遗传模糊规则的分类系统中的特征选择和粒度学习
机译:基于l(2,1)范数正则化的多核联合非线性特征选择和过采样用于不平衡数据分类
机译:基于数据分区混合采样驱动的基于模型动态选择的集合不平衡分类方法
机译:基于过度采样和特征选择的不平衡分类
机译:基于类关联规则的新特征选择方法
机译:通过使用采样和特征选择技术解决不平衡的患者分类数据提高乳腺癌的生存率
机译:基于模糊规则的高度不平衡数据集分类系统的特征选择和粒度学习遗传算法
机译:慢性阻塞性肺疾病肺活量FVC图分类的模糊规则库模型。