首页> 外文期刊>Pattern recognition letters >A sparse regularized nuclear norm based matrix regression for face recognition with contiguous occlusion
【24h】

A sparse regularized nuclear norm based matrix regression for face recognition with contiguous occlusion

机译:基于循环闭塞的稀有核规范基于核算法的基于矩阵回归

获取原文
获取原文并翻译 | 示例

摘要

Nuclear norm based matrix regression (NMR) method has been proposed to alleviate the influence of contiguous occlusion on face recognition problems. NMR considers that the error image of a test sample has low-rank structure due to the contiguous nature of occlusion. Based on the observation that l(1)-norm can uncover more natural sparsity of representations than l(2)-norm, we propose a sparse regularized NMR (SR_NMR) algorithm by imposing the l(1)-norm constraint rather than l(2)-norm on the representations of NMR framework. SR_NMR seamlessly integrates the nuclear norm based error matrix regression and l(1)-norm based sparse representation into one joint framework. Finally, we use the training samples to learn a linear classifier to implement efficient classification. Extensive experiments on three face databases show the proposed SR_NMR can achieve better recognition performance compared with the traditional NMR and other regression methods which indicates that sparse representations are very helpful to recover low-rank error images in the presence of severe occlusion and illumination changes. (C) 2019 Published by Elsevier B.V.
机译:已经提出了核规范基基质回归(NMR)方法以减轻邻接闭塞对人脸识别问题的影响。 NMR认为,由于闭塞的连续性,测试样本的错误图像具有低秩结构。基于L(1)-NORM可以揭示比L(2)-norm更加自然的稀疏性的观察,我们通过强制L(1)-NORM约束而不是L来提出稀疏正则化NMR(SR_NMR)算法( 2)-NORM在NMR框架的表示。 SR_NMR无缝地将基于核规范的误差矩阵回归和L(1) - 基于稀疏表示的L(1)集成到一个联合框架中。最后,我们使用训练样本来学习线性分类器来实现有效的分类。与传统的NMR和其他回归方法相比,三个面部数据库的广泛实验显示了所提出的SR_NMR可以实现更好的识别性能,这表明稀疏表示在存在严重的闭塞和照明变化时稀疏表示非常有助于恢复低秩误差图像。 (c)2019年由elestvier b.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号