首页> 外文期刊>Pattern recognition letters >Gender recognition in smartphones using touchscreen gestures
【24h】

Gender recognition in smartphones using touchscreen gestures

机译:使用触摸屏手势智能手机的性别识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an approach for gender recognition in smartphones using touchscreen gestures performed by the user. The primary behavioral data comprising readings from the accelerometer, gyroscope, and orientation sensors are acquired while the user interacts with the touchscreen device. These measurements are further enriched by deriving a secondary set of gesture attributes such as swipe length and point curvature. The GIST descriptor-based features are then extracted from two-dimensional maps of the gesture attributes. Finally, a k-nearest neighbor ((k-NN) classifier recognizes the user's gender based on a subset of features identified through feature selection. We have evaluated the performance of the proposed approach on two datasets, which consist of 2268 touch gestures from 126 subjects, collected using two different touchscreen devices. Our experiments show that the approach achieves higher gender classification accuracy compared to the existing method. In addition, the performance of our approach is consistent as it provides classification accuracy of 93.65% and 92.96% on the first and second datasets, respectively when multiple gestures are combined for gender recognition. Our study demonstrates that holistic image features considered in this work provide reliable information for smartphone-based gender classification. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文介绍了使用用户执行的触摸屏手势的智能手机中性别识别方法。在用户与触摸屏设备交互时,获取包括来自加速度计,陀螺和取向传感器的读取的主要行为数据。通过导出诸如滑动长度和点曲率的次要手势属性,进一步富集这些测量。然后,从手势属性的二维映射中提取基于GIST描述符的特征。最后,基于通过特征选择标识的功能的子集识别用户的性别。我们已经评估了在两个数据集中评估了所提出的方法的性能,这些方法由126的2268触摸手势组成使用两种不同的触摸屏设备收集的主题。我们的实验表明,与现有方法相比,该方法达到了更高的性别分类准确性。此外,我们的方法的性能是一致的,因为它提供了第一个分类准确性93.65%和92.96%的分类准确性。和第二个数据集分别用于性别识别。我们的研究表明,这项工作中考虑的整体图像特征为基于智能手机的性别分类提供了可靠的信息。(c)2019年Elsevier BV保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号