首页> 外文期刊>Pattern recognition letters >Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network
【24h】

Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network

机译:基于卷积神经网络的MRI序列DWT融合的脑肿瘤分类

获取原文
获取原文并翻译 | 示例

摘要

Tumor in brain is an anthology of anomalous cells. It leads to increase in death rate among humans. Therefore, in this manuscript, a fusion process is proposed to combine structural and texture information of four MRI sequences (T1C, T1, Flair and T2) for the detection of brain tumor. A discrete wavelet transform (DWT) along with Daubechies wavelet kernel is utilized for fusion process which provides a more informative tumor region as compared to an individual single sequence of MRI. After the fusion process, a partial differential diffusion filter (PDDF) is applied to remove noise. A global thresholding method is used for segmenting tumor region which is then fed to proposed convolutional neural network (CNN) model for finally differentiating tumor and non-tumor regions. Five publicly available datasets i.e., BRATS 2012, BRATS 2013, BRATS 2015, BRATS 2013 Leader board and BRATS 2018 are used for proposed method evaluation. The results show that fused images provide better results as compared to individual sequences on benchmark datasets. (C) 2019 Elsevier B.V. All rights reserved.
机译:脑瘤是一种异常细胞。它导致人类死亡率上升。因此,在该手稿中,提出了一种融合过程,以结合四个MRI序列(T1C,T1,Flair和T2)的结构和纹理信息来检测脑肿瘤。离散小波变换(DWT)与Daubechies小波核一起用于融合过程,与MRI的单个序列相比,它提供了更多信息。融合过程之后,应用了部分差分扩散滤波器(PDDF)来消除噪声。一种全局阈值化方法用于分割肿瘤区域,然后将其馈送到提出的卷积神经网络(CNN)模型,以最终区分肿瘤和非肿瘤区域。建议的方法评估使用了五个公开可用的数据集,即BRATS 2012,BRATS 2013,BRATS 2015,BRATS 2013排行榜和BRATS 2018。结果表明,与基准数据集上的单个序列相比,融合图像提供了更好的结果。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2020年第1期|115-122|共8页
  • 作者

  • 作者单位

    COMSATS Univ Islamabad Dept Comp Sci Wah Campus Pakistan Islamabad Pakistan;

    Radiol POF Hosp Wah Cantt Pakistan;

    Luther Coll Dept Comp Sci Decorah IA USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sequences; CNN; DWT; Global thresholding; Filter;

    机译:序列;CNN;载重吨;全局阈值;过滤;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号