首页> 外文期刊>Pattern recognition letters >Pattern complexity-based JND estimation for quantization watermarking
【24h】

Pattern complexity-based JND estimation for quantization watermarking

机译:基于模式复杂度的JND估计用于量化水印

获取原文
获取原文并翻译 | 示例

摘要

The perceptual just noticeable distortion (JND), which plays an important role in perceptual image watermarking and can refers to the optimal tradeoff between imperceptibility and robustness. Major challenges of the perceptual quantization watermarking approach are two-fold: (1) Most DCT-based JND models cannot accurately estimate the contrast masking effect due to the complicated interaction among visual contents. Research on cognitive science shows that the HVS is adaptive to extract the visual pattern for image understanding, and we can formulate the pattern complexity as another factor to determine the total watermarking strength. (2) Moreover, the calculated JND values will change as watermark embedding can affect the pixels of the image, i.e. the operation in cross-domain reduce the watermarking robustness. Therefore, in this regard, the maximum directional energy is calculated by three AC DCT coefficients, which can measure the different direction energy and keep the pattern complexity measurement insensitive to the changes caused by watermarking procedure. The luminance contrast is also calculated in the DCT domain. So a pattern complexity-based perceptual JND estimation model is designed by takeing DCT-based pattern complexity and luminance contrast into account. Furthermore, a new logarithmic quantization watermarking scheme is presented based on the proposed model to verify the feasibility and effectiveness of our proposed JND model. Experimental results show that the new built JND model can effectively enhance the robustness of the quantization watermarking scheme. (C) 2018 Elsevier B.V. All rights reserved.
机译:感知刚觉失真(JND)在感知图像水印中起着重要作用,可以指代不可感知性和鲁棒性之间的最佳权衡。感知量化水印方法的主要挑战有两个方面:(1)由于视觉内容之间复杂的交互作用,大多数基于DCT的JND模型无法准确估计对比度掩盖效果。认知科学研究表明,HVS可以自适应地提取视觉图案以进行图像理解,并且我们可以将图案复杂度公式化为确定总水印强度的另一个因素。 (2)此外,由于水印嵌入会影响图像的像素,因此计算的JND值将发生变化,即跨域操作会降低水印鲁棒性。因此,在这方面,通过三个AC DCT系数计算最大方向能量,可以测量不同方向的能量,并使图案复杂度测量对水印过程引起的变化不敏感。亮度对比度也在DCT域中计算。因此,通过考虑基于DCT的图案复杂度和亮度对比度,设计了基于图案复杂度的感知JND估计模型。此外,基于该模型提出了一种新的对数量化水印方案,以验证我们提出的JND模型的可行性和有效性。实验结果表明,新建立的JND模型可以有效地增强量化水印方案的鲁棒性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2020年第2期|157-164|共8页
  • 作者

  • 作者单位

    Shandong Normal Univ Sch Informat Sci & Engn Jinan 250014 Peoples R China;

    Shandong Management Univ Sch Mech & Elect Engn Jinan 250100 Peoples R China;

    Shandong Univ Sch Informat Sci & Engn Jinan 250100 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Perceptual JND model; Pattern complexity; Logarithmic STDM; Watermarking robustness;

    机译:感知JND模型;模式复杂度;对数STDM;水印鲁棒性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号