首页> 外文期刊>Pattern recognition letters >Lip biometric template security framework using spatial steganography
【24h】

Lip biometric template security framework using spatial steganography

机译:使用空间隐写术的嘴唇生物特征模板安全框架

获取原文
获取原文并翻译 | 示例

摘要

In this work, we have proposed an efficient and secured lip biometric framework. Unlike the traditional biometric frameworks, that focus on the recognition accuracy only, we focus on both recognition rate along with securing the templates stored in the biometric system. Our contribution also includes using a pre-processing step for improving the local features of the lip images. Local interest points detected by Scale Invariant Feature Transform (SIFT) are used for extracting the lip features. A spatial steganographic algorithm is employed on the lip images to ensure minimum distortion along with hiding the identity of the lip images in the images itself, thus ensuring less chance of misuse of the template. We have reported a comparative analysis of using our steganographic algorithm to secure the template management system to ensure that it does not hamper the recognition rate of the biometric system. We have validated our proposed framework on NITRLipV1 and NITRLipV2 comparing against state-of-the-art results which does not use identity hiding, and we have found the recognition along with hidden identity to yield equally satisfactory performance. (C) 2018 Elsevier B.V. All rights reserved.
机译:在这项工作中,我们提出了一种有效且安全的嘴唇生物识别框架。与传统的生物识别框架不同,传统的生物识别框架仅关注识别准确性,我们同时关注识别率和保护存储在生物识别系统中的模板。我们的贡献还包括使用预处理步骤来改善嘴唇图像的局部特征。通过尺度不变特征变换(SIFT)检测到的局部兴趣点用于提取嘴唇特征。在嘴唇图像上使用空间隐写算法以确保最小的失真,同时在图像本身中隐藏嘴唇图像的身份,从而确保更少的模板误用机会。我们已经报告了使用隐写算法来保护模板管理系统以确保其不会影响生物识别系统的识别率的比较分析。我们将NITRLipV1和NITRLipV2上的拟议框架与不使用身份隐藏的最新结果进行了比较,并且发现了识别和隐藏身份可以产生同样令人满意的性能。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号