首页> 外文期刊>Pattern recognition letters >Integrating word embeddings and document topics with deep learning in a video classification framework
【24h】

Integrating word embeddings and document topics with deep learning in a video classification framework

机译:在视频分类框架中将单词嵌入和文档主题与深度学习相集成

获取原文
获取原文并翻译 | 示例

摘要

The advent of MOOC platforms brought an abundance of video educational content that made the selection of best fitting content for a specific topic a lengthy process. To tackle this challenge in this paper we report our research efforts of using deep learning techniques for managing and classifying educational content for various search and retrieval applications in order to provide a more personalized learning experience. In this regard, we propose a framework which takes advantages of feature representations and deep learning for classifying video lectures in a MOOC setting to aid effective search and retrieval. The framework consists of three main modules. The first module called pre-processing concerns with video-to-text conversion. The second module is transcript representation which represents text in lecture transcripts into vector space by exploiting different representation techniques including bag-of-words, embeddings, transfer learning, and topic modeling. The final module covers classifiers whose aim is to label video lectures into the appropriate categories. Two deep learning models, namely feed-forward deep neural network (DNN) and convolutional neural network (CNN) are examined as part of the classifier module. Multiple simulations are carried out on a large-scale real dataset using various feature representations and classification techniques to test and validate the proposed framework. (C) 2019 Elsevier B.V. All rights reserved.
机译:MOOC平台的出现带来了大量的视频教学内容,这使得为特定主题选择最合适的内容变得冗长。为了解决这一挑战,我们在本文中报告了我们使用深度学习技术对各种搜索和检索应用程序中的教育内容进行管理和分类以提供更个性化学习体验的研究成果。在这方面,我们提出了一个框架,该框架利用特征表示和深度学习的优势在MOOC环境中对视频讲座进行分类,以帮助有效地进行搜索和检索。该框架包含三个主要模块。第一个模块称为预处理,涉及视频到文本的转换。第二个模块是成绩单表示,它通过利用不同的表示技术(包括词袋,嵌入,转移学习和主题建模)将演讲成绩单中的文本表示到向量空间中。最终模块涵盖分类器,其目的是将视频讲座标记为适当的类别。作为分类器模块的一部分,研究了两种深度学习模型,即前馈深度神经网络(DNN)和卷积神经网络(CNN)。使用各种特征表示和分类技术,在大规模真实数据集上进行多种模拟,以测试和验证所提出的框架。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号