首页> 外文期刊>Pattern recognition letters >Semantic three-stream network for social relation recognition
【24h】

Semantic three-stream network for social relation recognition

机译:语义三流网络,用于社会关系识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a semantic three-stream network (STN) for social relation recognition, which learns discriminative features from facial images directly by exploiting semantic information effectively. Specifically, we employ a semantic augmentation structure to extract enriched semantic features from original face images, where a Siamese network is used to extract features from a pair of face images. We concatenate features of three streams for social relation recognition. Unlike most existing relation recognition methods, our method explicitly uses semantic information to discover the social relation. The proposed semantic augmentation structure can be easily embedded into the off-the-shell deep neural network, which leads to a powerful and flexible semantic augmentation network. Experimental results show that our proposed method outperforms the state-of-the-arts. (C) 2019 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种用于社交关系识别的语义三流网络(STN),该网络通过有效地利用语义信息直接从面部图像中学习区分特征。具体来说,我们采用语义增强结构从原始人脸图像中提取丰富的语义特征,其中使用暹罗网络从一对人脸图像中提取特征。我们将三个流的特征串联起来以进行社会关系识别。与大多数现有的关系识别方法不同,我们的方法显式地使用语义信息来发现社会关系。所提出的语义增强结构可以很容易地嵌入到外壳深层神经网络中,从而形成强大而灵活的语义增强网络。实验结果表明,我们提出的方法优于最新技术。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号