首页> 外文期刊>Pattern recognition letters >Approximate spectral clustering density-based similarity for noisy datasets
【24h】

Approximate spectral clustering density-based similarity for noisy datasets

机译:嘈杂数据集的基于近似光谱聚类密度的相似度

获取原文
获取原文并翻译 | 示例

摘要

Approximate spectral clustering (ASC) was developed to overcome heavy computational demands of spectral clustering (SC). It maintains SC ability in predicting non-convex clusters. Since it involves a preprocessing step, ASC defines new similarity measures to assign weights on graph edges. Connectivity matrix (CONN) is an efficient similarity measure to construct graphs for ASC. It defines the weight between two vertices as the number of points assigned to them during vector quantization training. However, this relationship is undirected, where it is not clear which of the vertices is contributing more to that edge. Also, CONN could be tricked by noisy density between clusters. We defined a directed version of CONN, named DCONN, to get insights on vertices contributions to edges. Also, we provided filtering schemes to ensure CONN edges are highlighting potential clusters. Experiments reveal that the proposed filtering was highly efficient when noise cannot be tolerated by CONN. Crown Copyright (C) 2019 Published by Elsevier B.V. All rights reserved.
机译:开发了近似谱聚类(ASC)以克服对谱聚类(SC)的大量计算需求。它在预测非凸簇时保持SC能力。由于涉及到预处理步骤,因此ASC定义了新的相似性度量以在图形边缘上分配权重。连接矩阵(CONN)是一种有效的相似性度量,用于为ASC构建图。它将两个顶点之间的权重定义为向量量化训练期间分配给它们的点数。但是,这种关系是无向的,尚不清楚哪个顶点对该边缘的贡献更大。同样,CONN可能会受到簇之间噪声密度的欺骗。我们定义了CONN的有向版本,命名为DCONN,以了解顶点对边的贡献。此外,我们提供了过滤方案,以确保CONN边缘突出显示潜在的群集。实验表明,当CONN无法容忍噪声时,提出的滤波是高效的。官方版权(C)2019由Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号