首页> 外文期刊>Pattern recognition letters >Fast image similarity search by distributed locality sensitive hashing
【24h】

Fast image similarity search by distributed locality sensitive hashing

机译:通过分布式局部敏感散列进行快速图像相似性搜索

获取原文
获取原文并翻译 | 示例

摘要

Approximate Nearest Neighbor (ANN) search approaches that use possible neighbors instead of exact neighbors are widely investigated by researchers in recent years. ANN approaches are usually applied in a centralized manner. However, in real world applications data is usually stored in a distributed manner. This situation led to the need for implementing ANN methods in a distributed way. In this study, our goal is to perform fast and accurate search on large size image datasets by using distributed environments. For this purpose, we propose an approach called as Randomized Distributed Hashing (RDH) which uses Locality Sensitive Hashing (LSH) in a distributed scheme. In this approach, we have randomly distributed data to different nodes on a cluster. After the distribution of data, in each node we have used same randomized hash function set for indexing the local data. Then at the query stage, the query sample is locally searched in different nodes. By exploiting from parallelism, the query time performance is significantly increased. We have a speed up of 8 for the query performance in the distributed scheme with 10 nodes. The level of Mean Average Precision (MAP) scores are quite high which are comparable to other methods. We have also investigated the usage of different and selected randomized hash functions in different nodes rather than using same indexing. We create selected hash functions according to their data division property before indexing. Since LSH is data independent method, we have obtained similar results with using same hash functions. We compared our experimental results with state-of-the-art methods given in a recent study. The proposed distributed scheme is promising for searching images in large datasets with multiple nodes. (C) 2019 Elsevier B.V. All rights reserved.
机译:近年来,研究人员广泛研究了使用可能的邻居而不是精确邻居的近似最近邻居(ANN)搜索方法。人工神经网络方法通常以集中方式应用。但是,在实际应用中,数据通常以分布式方式存储。这种情况导致需要以分布式方式实现ANN方法。在这项研究中,我们的目标是通过使用分布式环境对大型图像数据集执行快速准确的搜索。为此,我们提出了一种称为随机分布式哈希(RDH)的方法,该方法在分布式方案中使用局部敏感哈希(LSH)。在这种方法中,我们将数据随机分布到集群上的不同节点。分配数据后,在每个节点中,我们使用了相同的随机哈希函数集来索引本地数据。然后在查询阶段,在不同节点中本地搜索查询样本。通过利用并行性,查询时间性能显着提高。在具有10个节点的分布式方案中,我们的查询性能提高了8倍。平均平均精度(MAP)得分很高,与其他方法相当。我们还研究了在不同节点中使用不同和选定的随机哈希函数的情况,而不是使用相同的索引。我们在索引之前根据其数据划分属性创建选定的哈希函数。由于LSH是与数据无关的方法,因此使用相同的哈希函数已经获得了相似的结果。我们将实验结果与最新研究中提供的最新方法进行了比较。所提出的分布式方案有望在具有多个节点的大型数据集中搜索图像。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号