首页> 外文期刊>Pattern recognition letters >A spatial self-similarity based feature learning method for face recognition under varying poses
【24h】

A spatial self-similarity based feature learning method for face recognition under varying poses

机译:基于空间自相似度的特征学习方法在不同姿势下的人脸识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a low-complexity method to learn pose-invariant features for face recognition with no need for pose information. In contrast to the commonly used approaches of recovering frontal face images from profile views, the proposed method extracts the subject related part from a local feature by removing its pose related part. First, the method generates a self-similarity feature by computing the distances between local feature descriptors of different non-overlapping blocks in a face image. Secondly, it subtracts from the local feature a linear transformation of the self-similarity feature and the transformation matrix is learned through minimizing the feature distance between face images from the same person but under different poses while retaining the discriminative information across different persons. In order to evaluate our method, extensive experiments on face recognition across poses are conducted using FERET and Multi-PIE, in addition, experiments on face recognition under unconstrained situations are conducted using LFW-a. Results on these three public databases show that the proposed method is able to significantly improve the recognition performance as compared with using the original local features and outperforms or is comparable to related, state-of-the-art pose-invariant face recognition approaches. (C) 2018 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种无需姿态信息即可学习人脸识别的不变姿势特征的低复杂度方法。与从轮廓视图中恢复正面人脸图像的常用方法相反,该方法通过删除其姿势相关部分从局部特征中提取对象相关部分。首先,该方法通过计算面部图像中不同的非重叠块的局部特征描述符之间的距离来生成自相似特征。其次,它从局部特征中减去自相似特征的线性变换,并通过最小化来自同一人但在不同姿势下的面部图像之间的特征距离,同时保留不同人之间的区别信息来学习变换矩阵。为了评估我们的方法,使用FERET和Multi-PIE进行了跨姿势的人脸识别的广泛实验,此外,使用LFW-a在不受约束的情况下进行了人脸识别的实验。在这三个公共数据库上的结果表明,与使用原始局部特征和性能相比,该方法能够显着提高识别性能,或者与相关的,最新的姿势不变的面部识别方法相当。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号