首页> 外文期刊>Pattern recognition letters >Dual Rectified Linear Units (DReLUs): A replacement for tanh activation functions in Quasi-Recurrent Neural Networks
【24h】

Dual Rectified Linear Units (DReLUs): A replacement for tanh activation functions in Quasi-Recurrent Neural Networks

机译:双整流线性单位(DReLU):替代准递归神经网络中的tanh激活函数

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a novel type of Rectified Linear Unit (ReLU), called a Dual Rectified Linear Unit (DReLU). A DReLU, which comes with an unbounded positive and negative image, can be used as a dropin replacement for a tanh activation function in the recurrent step of Quasi-Recurrent Neural Networks (QRNNs) [1]. Similar to ReLUs, DReLUs are less prone to the vanishing gradient problem, they are noise robust, and they induce sparse activations.We independently reproduce the QRNN experiments of Bradbury et al. [1] and compare our DReLUbased QRNNs with the original tanh-based QRNNs and Long Short-Term Memory networks (LSTMs) on sentiment classification and word-level language modeling. Additionally, we evaluate on character-level language modeling, showing that we are able to stack up to eight QRNN layers with DReLUs, thus making it possible to improve the current state-of-the-art in character-level language modeling over shallow architectures based on LSTMs. (C) 2018 Elsevier B.V. All rights reserved.
机译:在本文中,我们介绍了一种新型的整流线性单元(ReLU),称为双重整流线性单元(DReLU)。在准递归神经网络(QRNN)的递归步骤中,带有无界正负图像的DReLU可以用作tanh激活功能的dropin替代品。与ReLU相似,DReLU不那么容易消失梯度问题,它们具有较强的噪声能力,并且会引起稀疏的激活。我们独立地再现了Bradbury等人的QRNN实验。 [1]并将我们基于DReLU的QRNN与原始基于tanh的QRNN和长短期记忆网络(LSTM)在情感分类和词级语言建模上进行比较。此外,我们对字符级语言建模进行了评估,表明我们能够使用DReLU堆叠多达8个QRNN层,从而有可能改善浅层架构上字符级语言建模的最新技术基于LSTM。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号