首页> 外文期刊>Pattern recognition letters >An adaptive split-and-merge method for binary image contour data compression
【24h】

An adaptive split-and-merge method for binary image contour data compression

机译:二进制图像轮廓数据压缩的自适应拆分合并方法

获取原文
获取原文并翻译 | 示例

摘要

The split-and-merge method is a well-known algorithm for polygonal approximation in computer vision appli- cations such as feature extracting and pattern matching. Its accuracy depends on the tolerance, that is the error threshold value. This study presents a split-and-merge method with an adaptive tolerance value for compressing image contours. The tolerance value, which depends on the grid constant D and the line length of line L in a collinearity test, is adopted to reduce quantization error while keeping its original shape. A contour tracing method that achieves the right shape representation of binary images is also discussed. Experimental results for real binary contours show the method is effective for compression of a binary image. The proposed method allows a precise description of the original image and can smooth coarse contours. It is also computationally efficient.
机译:拆分合并方法是一种众所周知的算法,可用于计算机视觉应用中的多边形逼近,例如特征提取和模式匹配。其精度取决于公差,即误差阈值。这项研究提出了一种具有自适应公差值的分割合并方法,用于压缩图像轮廓。在共线性测试中,采用取决于栅格常数D和线L的线长度的公差值,以减少量化误差并同时保持其原始形状。还讨论了一种轮廓跟踪方法,该方法可实现二进制图像的正确形状表示。实际二进制轮廓的实验结果表明该方法对于压缩二进制图像是有效的。所提出的方法可以对原始图像进行精确描述,并可以平滑粗略轮廓。它的计算效率也很高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号