首页> 外文期刊>Pattern recognition letters >A note on conic fitting by the gradient weighted least-squares estimation: refined eigenvector solution
【24h】

A note on conic fitting by the gradient weighted least-squares estimation: refined eigenvector solution

机译:关于通过梯度加权最小二乘估计进行圆锥拟合的注释:改进的特征向量解

获取原文
获取原文并翻译 | 示例

摘要

The gradient weighted least-squares criterion is a popular criterion for conic fitting. When the non-linear minimi- sation problem is solved using the eigenvector method, the minimum is not reached and the resulting solution is an approximation. In this paper, we refine the existing eigenvector method so that the minimisation of the non-linear problem becomes exactly. Consequently we apply the refined algorithm ot the re-normalisation approach, by which the new iterative scheme yields to bias-corrected solution but based on the exact minimiser of the cost function. Experi- mental results show the improved performance of the proposed algorithm.
机译:梯度加权最小二乘准则是圆锥拟合的流行准则。当使用特征向量法解决非线性最小化问题时,未达到最小值,因此得出的解为近似值。在本文中,我们改进了现有的特征向量方法,以使非线性问题的最小化变得精确。因此,我们在重新归一化方法中应用了改进的算法,通过该算法,新的迭代方案可以得出偏差校正的解决方案,但要基于成本函数的确切最小值。实验结果表明,所提算法的性能有所提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号