首页> 外文期刊>Pattern recognition letters >A pseudo-nearest-neighbor approach for missing data recovery on Gaussian random data sets
【24h】

A pseudo-nearest-neighbor approach for missing data recovery on Gaussian random data sets

机译:一种伪近邻方法,用于对高斯随机数据集进行丢失数据恢复

获取原文
获取原文并翻译 | 示例

摘要

Missing data handling is an important preparation step for most data discrimination or mining tasks. Inappropriate treatment of missing data may cause large errors or false results. In this paper, we study the effect of a missing data recovery method, namely the pseudo-nearest-neighbor substitution approach, on Gaussian distributed data sets that represent typical cases in data discrimination and data mining application. The error rate of the proposed recovery method is evaluated by comparing the clustering results of the recovered data sets to the clustering results obtained on the originally complete data sets.
机译:丢失数据处理是大多数数据识别或挖掘任务的重要准备步骤。对丢失数据的不当处理可能会导致较大的错误或错误的结果。在本文中,我们研究了缺失数据恢复方法(即伪近邻替换方法)对代表数据歧视和数据挖掘应用中典型案例的高斯分布式数据集的影响。通过将恢复的数据集的聚类结果与在原始完整数据集上获得的聚类结果进行比较,可以评估所提出的恢复方法的错误率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号