首页> 外文期刊>Pattern recognition letters >A generalized Foley-Sammon transform based on generalized fisher discriminant criterion and its application to face recognition
【24h】

A generalized Foley-Sammon transform based on generalized fisher discriminant criterion and its application to face recognition

机译:基于广义fisher判别准则的广义Foley-Sammon变换及其在人脸识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

As the generalization of Fisher discriminant criterion, in this paper, the conception of the generalized Fisher discriminant criterion is presented. On the basis of the generalized Fisher discriminant criterion, the generalized Foley-Sammon transform (GFST) is proposed. The main difference between the GFST and the Foley-Sammon transform (FST) is that the sample set has the minimum within-class scatter and the maximum between-class scatter in the subspace spanned by all discriminant vectors constituting GFST while the sample set has these properties only on the one-dimensional subspace spanned by each discriminant vector constituting FST, that is, the transformed sample set by GFST has the best discriminant ability in global sense while FST has this property only in part sense. To calculate the GFST, an iterative algorithm is proposed, which is proven to converge to the precise solution. The speed and errors of the iterative procedure are also analyzed in detail. Lastly, our method is applied to facial image recognition, and the experimental results show that present method is superior to the existing methods in terms of correct classification rate.
机译:作为Fisher判别准则的泛化,提出了广义Fisher判别准则的概念。在广义Fisher判别准则的基础上,提出了广义Foley-Sammon变换(GFST)。 GFST和Foley-Sammon变换(FST)之间的主要区别在于,样本集在构成GFST的所有判别矢量所跨越的子空间中具有最小的类内散布和最大的类间散布,而样本集具有这些散布仅在构成FST的每个判别矢量所跨越的一维子空间上具有“正则”属性,即GFST变换后的样本集在全局意义上具有最佳判别能力,而FST仅在部分意义上具有此属性。为了计算GFST,提出了一种迭代算法,该算法被证明可以收敛到精确解。还详细分析了迭代过程的速度和错误。最后将我们的方法应用于人脸图像识别,实验结果表明,该方法在正确分类率上优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号