首页> 外文期刊>Pattern recognition letters >Comparison between error correcting output codes and fuzzy support vector machines
【24h】

Comparison between error correcting output codes and fuzzy support vector machines

机译:纠错输出码与模糊支持向量机的比较

获取原文
获取原文并翻译 | 示例

摘要

One-against-all support vector machines with discrete decision functions have unclassifiable regions. To resolve unclassifiable regions, support vector machines with continuous decision functions and fuzzy support vector machines have been proposed. If, in ECOC (error correcting output code) support vector machines, instead of discrete error functions, continuous error functions are used, unclassifiable regions are resolved. In this paper, first we prove that for one-against-all formulation, support vector machines with continuous decision functions are equivalent to fuzzy support vector machines with minimum and average operators. Then we discuss minimum operations as well as average operations for error functions of support vector machines and show the equivalence of ECOC support vector machines and fuzzy support vector machines for one-against-all formulation. Finally, we show by computer simulations that ECOC support vector machines are not always superior to one-against-all fuzzy support vector machines.
机译:具有离散决策功能的一对一支持向量机具有无法分类的区域。为了解决无法分类的区域,已经提出了具有连续决策功能的支持向量机和模糊支持向量机。如果在ECOC(纠错输出代码)支持向量机中,使用连续错误函数代替离散错误函数,则使用无法分类的区域。在本文中,我们首先证明,对于所有公式,具有连续决策功能的支持向量机等效于具有最小和平均算子的模糊支持向量机。然后,我们讨论了支持向量机的误差函数的最小运算和平均运算,并给出了针对所有公式的ECOC支持向量机和模糊支持向量机的等效性。最后,我们通过计算机仿真显示ECOC支持向量机并不总是优于所有模糊支持向量机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号