首页> 外文期刊>Pattern recognition letters >Using Gaussian distribution to construct fitness functions in genetic programming for multiclass object classification
【24h】

Using Gaussian distribution to construct fitness functions in genetic programming for multiclass object classification

机译:在多类对象分类的遗传规划中使用高斯分布构造适应度函数

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a new approach to the use of Gaussian distribution in genetic programming (GP) for multiclass object classification problems. Instead of using predefined multiple thresholds to form different regions in the program output space for different classes, this approach uses probabilities of different classes, derived from Gaussian distributions, to construct the fitness function for classification. Two fitness measures, overlap area and weighted distribution distance, have been developed. Rather than using the best evolved program in a population, this approach uses multiple programs and a voting strategy to perform classification. The approach is examined on three multiclass object classification problems of increasing difficulty and compared with a basic GP approach. The results suggest that the new approach is more effective and more efficient than the basic GP approach. Although developed for object classification, this approach is expected to be able to be applied to other classification problems.
机译:本文介绍了一种在遗传规划(GP)中使用高斯分布解决多类对象分类问题的新方法。该方法不是使用预定义的多个阈值在程序输出空间中为不同的类别形成不同的区域,而是使用从高斯分布派生的不同类别的概率来构建适合度的分类函数。已经开发了两种适合度度量,即重叠区域和加权分布距离。该方法不是使用总体上发展最快的程序,而是使用多个程序和表决策略来进行分类。对增加难度的三个多类对象分类问题进行了研究,并将其与基本的GP方法进行了比较。结果表明,新方法比基本的GP方法更有效,更有效。尽管是为对象分类而开发的,但预计该方法将能够应用于其他分类问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号