首页> 外文期刊>Pattern recognition letters >Promoter recognition based on the Interpolated Markov Chains optimized via simulated annealing and genetic algorithm
【24h】

Promoter recognition based on the Interpolated Markov Chains optimized via simulated annealing and genetic algorithm

机译:基于模拟退火和遗传算法优化的内插马尔可夫链的启动子识别

获取原文
获取原文并翻译 | 示例

摘要

Simulated annealing (SA) and genetic algorithm (GA) are utilized to optimize Interpolation Markov Chains (IMC) model for promoter recognition. The deletions and insertions of nucleotides in DNA sequences are introduced into the IMC model whose transition probabilities are established with SA. The noise is filtered to reduce the complexity of model parameters. And to improve the gradient descent algorithm being liable to fall into the local minimum point, GA is presented for an automated estimation of global optimal interpolation coefficients. A simulation result shows that the sensitivity and specificity in promoter level are both higher than 86% on the test set.
机译:利用模拟退火(SA)和遗传算法(GA)来优化内插马尔可夫链(IMC)模型以识别启动子。 DNA序列中核苷酸的缺失和插入被引入到IMC模型中,该模型的转化概率由SA确定。噪声被过滤以减少模型参数的复杂性。为了改善梯度下降算法易于陷入局部最小点的缺点,提出了一种遗传算法,用于自动估计全局最优插值系数。模拟结果表明,启动子水平的敏感性和特异性均高于测试集的86%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号