首页> 外文期刊>Pattern recognition letters >Improved the-law-of-cosines-based fast search method for vector quantization by updating angular information
【24h】

Improved the-law-of-cosines-based fast search method for vector quantization by updating angular information

机译:通过更新角度信息改进的基于余弦定律的矢量量化快速搜索方法

获取原文
获取原文并翻译 | 示例

摘要

Vector quantization (VQ) is a well-known signal compression method. In the framework of VQ, fast search method is one of the key issues because it is the time bottleneck for practical VQ applications. By introducing the-law-of-cosines and directly using the angular information to reject a candidate codeword, the previous work [Chung, K.L., Lai, J.Y., 2004. Pattern Recognition Lett. 25 (14), 1613-1617] has proposed a very efficient fast search method for VQ encoding. However, there still exist two problems in this work as (1) a complicated arccosine function (i.e., COS~(-1)) is used and (2) the reference vector for a given input vector is fixedly selected as the initial best-matched codeword in terms of the minimum difference between L_2 norm and no updating to the reference vector is conducted during the whole search process. This paper aims at improving these two problems further by (1) avoiding using the COS~(-1) function completely and (2) updating the reference vector whenever it is possible so as to be able to set up a better reference vector for the following search process. Because a better reference vector always helps to reject a candidate codeword, it in principle can speed up the search process. Experimental results confirmed that the proposed method outperforms the previous work [Chung, K.L., Lai, J.Y., 2004. Pattern Recognition Lett. 25 (14), 1613-1617] obviously.
机译:矢量量化(VQ)是一种众所周知的信号压缩方法。在VQ框架中,快速搜索方法是关键问题之一,因为它是实际VQ应用程序的时间瓶颈。通过引入余弦定律并直接使用角度信息来拒绝候选码字,以前的工作[Chung,K.L.,Lai,J.Y.,2004. Pattern Recognition Lett。 25(14),1613-1617]提出了一种非常有效的VQ编码快速搜索方法。但是,这项工作仍然存在两个问题:(1)使用复杂的反余弦函数(即COS〜(-1)),(2)固定选择给定输入向量的参考向量作为初始最佳-在整个搜索过程中,就L_2范数之间的最小差而言匹配了码字,并且没有更新参考矢量。本文旨在通过(1)避免完全使用COS〜(-1)函数和(2)尽可能地更新参考向量来进一步改善这两个问题,以便能够为该参数建立更好的参考向量。接下来的搜索过程。因为更好的参考向量总是有助于拒绝候选码字,所以原则上它可以加快搜索过程。实验结果证实,所提出的方法优于以前的工作[Chung,K.L.,Lai,J.Y.,2004。 25(14),1613-1617]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号