首页> 外文期刊>Pattern recognition letters >Rotation and scaling invariant texture classification based on Radon transform and multiscale analysis
【24h】

Rotation and scaling invariant texture classification based on Radon transform and multiscale analysis

机译:基于Radon变换和多尺度分析的旋转缩放不变纹理分类。

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a rotation and scaling invariant feature set based on Radon transform and multiscale analysis. Radon transform is used to project the image to 1-D space, and then the rows of the projection matrix are transformed by an adaptive 1-D wavelet transform, thus the feature matrix with scaling invariance is derived in the Radon-wavelet domain. Multiscale analysis is employed for the feature matrix, and the energy values at different scales are proven not only to be invariant under image scaling and rotation, but also to reflect the different energy distributions of the texture image at different scales. In the classification stage, Mahalanobis classifier is used to classify 25 classes of distinct natural textures. Using the testing image sets with different orientations and scaling, experimental results show that the average recognition rate for joint rotation and scaling invariance of our proposed classification method can be 92.2%.
机译:在本文中,我们提出了一种基于Radon变换和多尺度分析的旋转和缩放不变特征集。使用Radon变换将图像投影到一维空间,然后通过自适应一维小波变换对投影矩阵的行进行变换,从而在Radon小波域中导出具有缩放不变性的特征矩阵。特征矩阵采用多尺度分析,不仅在图像缩放和旋转下,不同尺度的能量值被证明是不变的,而且在不同尺度下反映了纹理图像的不同能量分布。在分类阶段,使用Mahalanobis分类器对25种不同的自然纹理进行分类。使用具有不同方向和缩放比例的测试图像集,实验结果表明,我们提出的分类方法对关节旋转和缩放不变性的平均识别率为92.2%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号