首页> 外文期刊>Pattern recognition letters >Using pseudo amino acid composition to predict protein subnuclear localization: Approached with PSSM
【24h】

Using pseudo amino acid composition to predict protein subnuclear localization: Approached with PSSM

机译:使用伪氨基酸组成预测蛋白质亚核定位:与PSSM接触

获取原文
获取原文并翻译 | 示例

摘要

Identification of Nuclear protein localization assumes significance as it can provide in depth insight for genome regulation and function annotation of novel proteins. A multiclass SVM classifier with various input features was employed for nuclear protein compartment identification. The input features include factor solution scores and evolutionary information (position specific scoring matrix (PSSM) score) apart from conventional dipeptide composition and pseudo amino acid composition. All the SVM classifiers with different sets of input features performed better than the previously available prediction classifiers. The jack-knife success rate thus obtained on the benchmark dataset constructed by Shen and Chou [Shen, H.B., Chou, K.C., 2005, Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition. Biochem. Biophys. Res. Commun. 337, 752-756] is 71.23%, indicating that the novel pseudo amino acid composition approach with PSSM and SVM classifier is very promising and may at least play a complimentary role to the existing methods.
机译:核蛋白定位的鉴定具有重要意义,因为它可以为基因组调控和新型蛋白的功能注释提供深入的信息。具有多种输入功能的多类SVM分类器用于核蛋白区室鉴定。除了传统的二肽组成和伪氨基酸组成外,输入功能还包括因子溶液分数和进化信息(位置特定评分矩阵(PSSM)分数)。具有不同输入特征集的所有SVM分类器的性能均优于以前可用的预测分类器。因此,在Shen和Chou构建的基准数据集上获得了千斤顶成功率[Shen,H.B.,Chou,K.C.,2005,使用优化的证据理论K最近分类器和伪氨基酸组成预测蛋白质亚核位置。生化。生物物理学。 Res。公社[337,752-756]为71.23%,表明采用PSSM和SVM分类器的新型伪氨基酸组成方法非常有前途,并且至少可以对现有方法起到补充作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号