首页> 外文期刊>Pattern recognition letters >Using Fourier local magnitude in adaptive smoothness constraints in motion estimation
【24h】

Using Fourier local magnitude in adaptive smoothness constraints in motion estimation

机译:在运动估计的自适应平滑约束中使用傅立叶局部幅度

获取原文
获取原文并翻译 | 示例

摘要

Like many problems in image analysis, motion estimation is an ill-posed one, since the available data do not always sufficiently constrain the solution. It is therefore necessary to regularize the solution by imposing a smoothness constraint. One of the main difficulties while estimating motion is to preserve the discontinuities of the motion field. In this paper, we address this problem by integrating the motion magnitude information obtained by the Fourier analysis into the smoothness constraint, resulting in an adaptive smoothness. We describe how to achieve this with two different motion estimation approaches: the Horn and Schunck method and the Markov Random Field (MRF) modeling. The two smoothness constraints obtained are compared with standard solutions. Experimental results with synthetic and real-life image sequences show a significant improvement of motion estimation in both cases.
机译:像图像分析中的许多问题一样,运动估计是一个不适的问题,因为可用数据并不总是会充分约束解决方案。因此,有必要通过施加平滑约束来规范化解决方案。估计运动时的主要困难之一是保持运动场的不连续性。在本文中,我们通过将通过傅立叶分析获得的运动幅度信息集成到平滑度约束中来解决此问题,从而获得自适应平滑度。我们描述了如何通过两种不同的运动估计方法来实现这一目标:Horn和Schunck方法以及Markov随机场(MRF)建模。将获得的两个平滑约束与标准解决方案进行比较。合成和真实图像序列的实验结果表明,在两种情况下,运动估计均得到了显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号