首页> 外文期刊>Pattern recognition letters >Semi-continuous HMMs with explicit state duration for unconstrained Arabic word modeling and recognition
【24h】

Semi-continuous HMMs with explicit state duration for unconstrained Arabic word modeling and recognition

机译:具有显式状态持续时间的半连续HMM,用于不受约束的阿拉伯语单词建模和识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we describe an off-line unconstrained handwritten Arabic word recognition system based on segmentation-free approach and semi-continuous hidden Markov models (SCHMMs) with explicit state duration. Character durations play a significant part in the recognition of cursive handwriting. The duration information is still mostly disregarded in HMM-based automatic cursive handwriting recognizers due to the fact that HMMs are deficient in modeling character durations properly. We will show experimentally that explicit state duration modeling in the SCHMM framework can significantly improve the discriminating capacity of the SCHMMs to deal with very difficult pattern recognition tasks such as unconstrained handwritten Arabic recognition. In order to carry out the letter and word model training and recognition more efficiently, we propose a new version of the Viterbi algorithm taking into account explicit state duration modeling. Three distributions (Gamma, Gauss and Poisson) for the explicit state duration modeling have been used and a comparison between them has been reported. To perform word recognition, the described system uses an original sliding window approach based on vertical projection histogram analysis of the word and extracts a new pertinent set of statistical and structural features from the word image. Several experiments have been performed using the IFN/ENIT benchmark database and the best recognition performances achieved by our system outperform those reported recently on the same database.
机译:在本文中,我们描述了一种基于无分段方法和显式状态持续时间的半连续隐马尔可夫模型(SCHMM)的离线无约束手写阿拉伯语单词识别系统。字符持续时间在识别草书中起着重要的作用。在基于HMM的自动草书手写识别器中,由于HMM不能正确地建模字符持续时间,因此持续时间信息在大多数情况下仍被忽略。我们将通过实验证明,SCHMM框架中的显式状态持续时间建模可以显着提高SCHMM的辨别能力,以处理非常困难的模式识别任务,例如不受约束的手写阿拉伯文识别。为了更有效地进行字母和单词模型的训练和识别,我们提出了考虑显式状态持续时间建模的Viterbi算法的新版本。显式状态持续时间建模使用了三种分布(Gamma,Gauss和Poisson),并已进行了比较。为了执行单词识别,所描述的系统使用基于单词的垂直投影直方图分析的原始滑动窗口方法,并从单词图像中提取一组新的统计和结构特征。使用IFN / ENIT基准数据库进行了几次实验,我们的系统实现的最佳识别性能优于最近在同一数据库上报告的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号