首页> 外文期刊>Pattern recognition letters >Learning complex background by multi-scale discriminative model
【24h】

Learning complex background by multi-scale discriminative model

机译:通过多尺度判别模型学习复杂背景

获取原文
获取原文并翻译 | 示例

摘要

A key problem in automated surveillance systems is to detect foreground accurately in image sequence. However, it is difficult in complex scenes. In this paper, we consider the problem as a labeling problem and present a multi-scale discriminative model to learn complex background for foreground detection. First, the static background is obtained by pixel-wise methods. At the same time, the periodic motions, such as swaying tree, water wave and moving shadow, will be wrongly detected as foreground, due to they have the same motion feature with true foreground. The detected results in this step are denoted as moving objects. Second, the pixels in the moving objects can be classified as dynamic background and foreground associated with the confidence by a boosted classifier. A Gaussian filter bank with different variances is exploited to form multi-scale images in different image spaces at the beginning, then a feature pool is obtained by kernel density estimation on the image sequence over time. The boosted classifier is trained by AdaBoost over the feature pool and the labeled positive and negative data. Third, Markov random field (MRF) model is used to infer the spatial and temporal coherence over the labels for foreground/background segmentation accurately. Experiments tested on the various videos show that the proposed method can be work well on the complex background.
机译:自动化监视系统中的一个关键问题是在图像序列中准确检测前景。但是,在复杂的场景中很难。在本文中,我们将此问题视为标记问题,并提出了一种多尺度判别模型来学习用于前景检测的复杂背景。首先,通过像素方式获得静态背景。同时,摇摆的树木,水浪和运动的阴影等周期性运动将被错误地检测为前景,因为它们具有与真实前景相同的运动特征。在此步骤中将检测到的结果表示为移动对象。其次,可以通过增强的分类器将运动对象中的像素分类为与置信度相关联的动态背景和前景。首先利用具有不同方差的高斯滤波器组在不同图像空间中形成多尺度图像,然后通过随时间推移对图像序列进行核密度估计来获得特征池。 AdaBoost在功能库以及标记为正数和负数的数据上对提升后的分类器进行了训练。第三,使用马尔可夫随机场(MRF)模型来推断标签上的空间和时间相干性,以准确进行前景/背景分割。在各种视频上测试的实验表明,该方法可以在复杂的背景下很好地工作。

著录项

  • 来源
    《Pattern recognition letters》 |2009年第11期|1003-1014|共12页
  • 作者

    Yufei Zha; Duyan Bi; Yuan Yang;

  • 作者单位

    Signal and Information Processing Lab, Engineering College of Air Force Engineering University, Xi'an, China;

    Signal and Information Processing Lab, Engineering College of Air Force Engineering University, Xi'an, China;

    Signal and Information Processing Lab, Engineering College of Air Force Engineering University, Xi'an, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    background subtraction; multi-scale; kernel density estimation; ada boost; markov random field;

    机译:背景扣除;多尺度核密度估计;ada提升马可夫随机场;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号