首页> 外文期刊>Pattern recognition letters >State-of-the-art of 3D facial reconstruction methods for face recognition based on a single 2D training image per person
【24h】

State-of-the-art of 3D facial reconstruction methods for face recognition based on a single 2D training image per person

机译:基于人均单个2D训练图像的3D人脸识别最新技术

获取原文
获取原文并翻译 | 示例

摘要

3D facial reconstruction systems attempt to reconstruct 3D facial models of individuals from their 2D photographic images or video sequences. Currently published face recognition systems, which exhibit well-known deficiencies, are largely based on 2D facial images, although 3D image capture systems can better encapsulate the 3D geometry of the human face. Accordingly, face recognition research is gradually shifting from the legacy 2D domain to the more sophisticated 2D to 3D or 2D/3D hybrid domain. Currently there exist four methods for 3D facial reconstruction. These are: Stochastic Newton Optimization method (SNO) [Blanz, V., Vetter, T., 1999. A morphable model for the synthesis of 3D faces. In: Proc. 26th Annu. Conf. on Computer Graphics and Interactive Techniques, SIGGRAPH. pp. 187-194; Blanz, V., Vetter, T., 2003. Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Machine Intell. 25(9), 1063-1074; Blanz, V., 2001. Automatische Rekonstruction der Dreidimensionalen Form von Gesichtern aus einem Einzelbild. Ph.D. Thesis, Universitat Tubingen, Germany] inverse compositional image alignment algorithm (iCIA) [Romdhani, S., Vetter, T., 2003. Efficient, robust and accurate fitting of a 3D morphable model. In: IEEE Int. Conf. on Computer Vision, vol. 2, no. 1. pp. 59-66], linear shape and texture fitting algorithm (LiST) [ Romdhani, S., Blanz, V., Vetter, T., 2002. Face identification by fitting a 3D morphable model using linear shape and texture error functions. In: Proc. ECCV, vol. 4. pp. 3-19), and shape alignment and interpolation method correction (SAIMC) [Jiang, D., Hu, Y., Yan, S., Zhang, L., Zhang, H., Gao, W., 2005. Efficient 3D reconstruction for face recognition. Pattern Recogn. 38(6), 787-798]. The first three, SNO, ICIA + 3DMM, and LiST can be classified as "analysis-by-synthesis" techniques and SAIMC can be separately classified as a "3D supported 2D model". In this paper, we introduce, discuss and analyze the difference between these two frameworks. We begin by presenting the 3D morphable model (3DMM; Blanz and Vetter, 1999), which forms the foundation of all four of the reconstruction techniques described here. This is followed by a review of the basic "analysis-by-synthesis" framework and a comparison of the three methods that employ this approach. We next review the "3D supported 2D model" framework and introduce the SAIMC method, comparing it to the other three. The characteristics of all four methods are summarized in a table that should facilitate further research on this topic.
机译:3D面部重建系统尝试从其2D摄影图像或视频序列重建个人的3D面部模型。尽管3D图像捕获系统可以更好地封装人脸的3D几何形状,但目前公开的表现出众所周知缺陷的人脸识别系统主要基于2D人脸图像。因此,面部识别研究正在逐渐从传统的2D域转移到更复杂的2D到3D或2D / 3D混合域。当前,存在用于3D面部重建的四种方法。它们是:随机牛顿优化方法(SNO)[Blanz,V.,Vetter,T.,1999。3D人脸合成的可变形模型。在:Proc。安努26日。 Conf。 SIGGRAPH上的“计算机图形学和交互技术”。 187-194页; Blanz,V.,Vetter,T.,2003。基于拟合3D可变形模型的人脸识别。 IEEE Trans。模式肛门。机器智能。 25(9),1063-1074; Blanz,V.,2001年。DreiDimensionen形式的自动复制格式,由Einzelbild继承。博士论文,德国图宾根大学]逆合成图像对齐算法(iCIA)[Romdhani,S.,Vetter,T.,2003。高效,鲁棒和准确地拟合3D变形模型。在:IEEE国际。 Conf。关于计算机视觉,第一卷。 2,没有1. pp。59-66],线性形状和纹理拟合算法(LiST)[Romdhani,S.,Blanz,V.,Vetter,T.,2002.通过使用线性形状和纹理误差拟合3D可变形模型来进行人脸识别功能。在:Proc。 ECCV,第1卷。 4. pp。3-19),以及形状对齐和插值方法校正(SAIMC)[江大中,胡亚英,严南升,张立良,张高立,高荣成, 2005。有效的3D重建,用于人脸识别。模式识别。 38(6),787-798]。前三个SNO,ICIA + 3DMM和LiST可以归类为“综合分析”技术,而SAIMC可以分别归类为“ 3D支持的2D模型”。在本文中,我们将介绍,讨论和分析这两个框架之间的差异。我们首先介绍3D可变形模型(3DMM; Blanz和Vetter,1999),该模型构成了此处所述的所有四种重建技术的基础。接下来,对基本的“综合分析”框架进行了回顾,并对采用这种方法的三种方法进行了比较。接下来,我们回顾“ 3D支持的2D模型”框架,并介绍SAIMC方法,并将其与其他三种方法进行比较。表格中总结了这四种方法的特性,这些特性应有助于对此主题进行进一步的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号