首页> 外文期刊>Pattern recognition letters >A novel MAP-MRF approach for multispectral image contextual classification using combination of suboptimal iterative algorithms
【24h】

A novel MAP-MRF approach for multispectral image contextual classification using combination of suboptimal iterative algorithms

机译:结合次优迭代算法的多光谱图像上下文分类新的MAP-MRF方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present a novel approach for multispectral image contextual classification by combining iterative combinatorial optimization algorithms. The pixel-wise decision rule is defined using a Bayesian approach to combine two MRF models: a Gaussian Markov Random Field (GMRF) for the observations (likelihood) and a Potts model for the a priori knowledge, to regularize the solution in the presence of noisy data. Hence, the classification problem is stated according to a Maximum a Posteriori (MAP) framework. In order to approximate the MAP solution we apply several combinatorial optimization methods using multiple simultaneous initializations, making the solution less sensitive to the initial conditions and reducing both computational cost and time in comparison to Simulated Annealing, often unfeasible in many real image processing applications. Markov Random Field model parameters are estimated by Maximum Pseudo-Likelihood (MPL) approach, avoiding manual adjustments in the choice of the regular-ization parameters. Asymptotic evaluations assess the accuracy of the proposed parameter estimation procedure. To test and evaluate the proposed classification method, we adopt metrics for quantitative performance assessment (Cohen's Kappa coefficient), allowing a robust and accurate statistical analysis. The obtained results clearly show that combining sub-optimal contextual algorithms significantly improves the classification performance, indicating the effectiveness of the proposed methodology.
机译:在本文中,我们通过结合迭代组合优化算法,提出了一种用于多光谱图像上下文分类的新颖方法。使用贝叶斯方法定义逐个像素决策规则,以结合两个MRF模型:用于观测(似然性)的高斯马尔可夫随机场(GMRF)和用于先验知识的Potts模型,以便在存在以下情况时对解决方案进行规范化嘈杂的数据。因此,根据最大后验(MAP)框架来说明分类问题。为了逼近MAP解决方案,我们应用了多种使用多个同时初始化的组合优化方法,这使得该解决方案对初始条件的敏感性降低,并且与模拟退火相比,这在许多实际图像处理应用中通常不可行,从而降低了计算成本和时间。马尔可夫随机场模型参数是通过最大伪似然(MPL)方法估算的,避免了对正则化参数的选择进行人工调整。渐进评估评估所提出的参数估计程序的准确性。为了测试和评估建议的分类方法,我们采用了量化绩效评估指标(Cohen的Kappa系数),从而可以进行稳健而准确的统计分析。获得的结果清楚地表明,结合次优上下文算法可以显着提高分类性能,表明所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号