首页> 外文期刊>Pattern recognition letters >A new algorithm for initial cluster centers in k-means algorithm
【24h】

A new algorithm for initial cluster centers in k-means algorithm

机译:k-均值算法中初始聚类中心的新算法

获取原文
获取原文并翻译 | 示例

摘要

Clustering is one of the widely used knowledge discovery techniques to reveal structures in a dataset that can be extremely useful to the analyst. In iterative clustering algorithms the procedure adopted for choosing initial cluster centers is extremely important as it has a direct impact on the formation of final clusters. Since clusters are separated groups in a feature space, it is desirable to select initial centers which are well separated. In this paper, we have proposed an algorithm to compute initial cluster centers for k-means algorithm. The algorithm is applied to several different datasets in different dimension for illustrative purposes. It is observed that the newly proposed algorithm has good performance to obtain the initial cluster centers for the fc-means algorithm.
机译:聚类是广泛使用的知识发现技术之一,可以揭示数据集中的结构,这对分析人员非常有用。在迭代聚类算法中,选择初始聚类中心所采用的过程非常重要,因为它直接影响最终聚类的形成。由于聚类是在特征空间中分离的组,因此希望选择分离良好的初始中心。在本文中,我们提出了一种计算k均值算法的初始聚类中心的算法。出于说明目的,将该算法应用于不同维度的几个不同数据集。可以看出,新提出的算法在获得fc-means算法的初始聚类中心方面具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号