首页> 外文期刊>Pattern recognition letters >Simple low-dimensional features approximating NCC-based image matching
【24h】

Simple low-dimensional features approximating NCC-based image matching

机译:简单的低维特征,近似基于NCC的图像匹配

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes new low-dimensional image features that enable images to be very efficiently matched. Image matching is one of the key technologies for many vision-based applications, including template matching, block motion estimation, video compression, stereo vision, image/video near-duplicate detection, similarity join for image/video database, and so on. Normalized cross correlation (NCC) is one of widely used method for image matching with preferable characteristics such as robustness to intensity offsets and contrast changes, but it is computationally expensive. The proposed features, derived by the method of Lagrange multipliers, can provide upper-bounds of NCC as a simple dot product between two low-dimensional feature vectors. By using the proposed features, NCC-based image matching can be effectively accelerated. The matching performance with the proposed features is demonstrated using an image database obtained from actual broadcast videos. The new features are shown to outperform other methods: multilevel successive elimination algorithm (MSEA), discrete cosine transform (DCT) coefficients, and histograms, achieving very high precision while only slightly sacrificing recall.
机译:本文提出了新的低维图像特征,可以使图像非常有效地匹配。图像匹配是许多基于视觉的应用程序的关键技术之一,包括模板匹配,块运动估计,视频压缩,立体视觉,图像/视频近重复检测,图像/视频数据库的相似联接等。归一化互相关(NCC)是图像匹配的一种广泛使用的方法,具有较好的特性,例如对强度偏移的鲁棒性和对比度变化,但计算量大。通过拉格朗日乘法器方法得出的拟议特征可以提供NCC的上限,作为两个低维特征向量之间的简单点积。通过使用提出的功能,可以有效地加速基于NCC的图像匹配。使用从实际广播视频获得的图像数据库,可以证明与所建议功能的匹配性能。这些新功能的性能优于其他方法:多级连续消除算法(MSEA),离散余弦变换(DCT)系数和直方图,可以实现非常高的精度,同时仅略微降低召回率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号